
Incremental Cryptography Revisited:
PRFs, Nonces and Modular Design

Vivek Arte - UCSD

Mihir Bellare - UCSD

Louiza Khati - ANSSI

https://eprint.iacr.org/2020/1360

https://eprint.iacr.org/2020/1360

Motivation

2

WITHOUT INCREMENTALITY

tag

updated tag

tag needs to be computed from scratch,
using the entire document!

This can be pretty inefficient for large
documents that require frequent updates

document

updated document

𝖳𝗀K

Edit

𝖳𝗀K

slow

𝖴𝗉K fast!
op, arg WITH INCREMENTALITY [BGG95]

use document, previous tag and edit
details to construct updated tag

incremental cryptography

message authentication
[BGG94, BGG95, Fis97a, KV19]

encryption
[BGG95, BKY02]

authenticated encryption
[SY16]

collision-resistant
hashing

[BGG94, BM97, MGS15]

digital signatures
[BGG94, Mic97, Fis97b]

program obfuscation
[GP17]deterministic public-key encryption

[MPRS12]

pseudo-random functions
[this work]

Why IPRFs? incremental cryptography pseudo-random functions
[this work]

Allows for efficiency improvement via incrementality in a broader range of
applications

Consider key-derivation:

PRF
K
Xi

Ki

static dynamic-i

PRF
K

Xi+1
Ki+1

static dynamic-(i+1)

An incremental PRF will allow will allow updating from to
faster than computing it from scratch

Ki Ki+1

those needing pseudo-randomness

3

Contributions

Definitions Tools for Modular Design Constructions

4

Contributions

Definitions

❖ introduce incremental pseudorandom functions (IPRFs) and
incremental function families (iFFs)

nonce-based

STAY TUNED!

❖ security notions for iFFs IUF : incremental unforgeability IPRF : incremental pseudorandomness

Contributions

Tools for Modular Design

Single-document schemes : secure when only a single document is considered
Multi-document schemes : secure even when multiple documents are considered

❖ transforms to convert single-document schemes into multi-document schemes
StM2

𝗂𝖥𝗌𝖽

𝗂𝖥𝗆𝖽

H

StM1

𝗂𝖥𝗌𝖽

𝗂𝖥𝗆𝖽

F

❖ StM1 — works for all edit operations, non-tight security reduction
❖ StM2 — works for a large class of edit operations, tight security reduction
❖ work for both IUF and IPRF security

❖ transform to build single-document IPRF schemes from incremental hash functions
❖ extends the Carter-Wegman paradigm [WC81] to the incremental setting

6

❖ iHtE uses incremental hash function and symmetric encryption scheme 𝗂𝖧𝖥 𝖲𝖤 iHtE

𝗂𝖧𝖥

𝗂𝖥

𝖲𝖤

 uses the NBE2 syntax of [BNT19]𝖲𝖤

Contributions
Constructions

❖ applies modular design tools to build IPRFs out of existing message authentication schemes
❖ extract underlying incremental hash function, then use iHtE to build single-document IPRF

Document Editing Systems

8

Examples of edit-operations on document D =

non-cryptographic object
describes document format

defines set of edit operations

𝖤𝖽
D

op

arg
D′

({0,1}𝖻𝗅)* ∋

𝖮𝗉𝖢 ∋

𝖮𝗉𝖠 ∋

… D[i − 1] D[i] D[i + 1] … D[m]D[1]

op arg D′

replace (i, x) … D[i − 1] D[i] D[i + 1] … D[m]D[1]

Document Editing Systems

9

non-cryptographic object

Examples of edit-operations on document D =

𝖤𝖽
D

op

arg
D′

({0,1}𝖻𝗅)* ∋

𝖮𝗉𝖢 ∋

𝖮𝗉𝖠 ∋

… D[i − 1] D[i] D[i + 1] … D[m]D[1]

op arg D′

replace (i, x) … D[i − 1] x D[i + 1] … D[m]D[1]

insert (i, x) … D[i − 1] D[i] D[i + 1] … D[m]D[1]

describes document format

defines set of edit operations

Document Editing Systems

10

non-cryptographic object

Examples of edit-operations on document D =

𝖤𝖽
D

op

arg
D′

({0,1}𝖻𝗅)* ∋

𝖮𝗉𝖢 ∋

𝖮𝗉𝖠 ∋

… D[i − 1] D[i] D[i + 1] … D[m]D[1]

op arg D′

replace (i, x) … D[i − 1] x D[i + 1] … D[m]D[1]

insert (i, x) … D[i − 1] D[i] D[i + 1] … D[m]D[1] x

delete i … D[i − 1] D[i] D[i + 1] … D[m]D[1]

describes document format

defines set of edit operations

Document Editing Systems

11

non-cryptographic object

Examples of edit-operations on document D =

𝖤𝖽
D

op

arg
D′

({0,1}𝖻𝗅)* ∋

𝖮𝗉𝖢 ∋

𝖮𝗉𝖠 ∋

… D[i − 1] D[i] D[i + 1] … D[m]D[1]

op arg D′

replace (i, x) … D[i − 1] x D[i + 1] … D[m]D[1]

insert (i, x) … D[i − 1] D[i] D[i + 1] … D[m]D[1] x

delete i … D[i − 1] D[i + 1] … D[m]D[1]

𝖣𝖤 = (𝖻𝗅, 𝖡𝖲, 𝖮𝗉𝖢, 𝖮𝗉𝖠, 𝖤𝖽)

block length
block space
= {0,1}𝖻𝗅 edit-operation

codes
edit-operation

arguments

edit function

describes document format

defines set of edit operations

Incremental Function Families (iFFs)

An iFF is defined for a document editing system 𝖣𝖤

𝗂𝖥 = (𝖪𝖲, 𝖭𝖲, 𝖱𝗇𝗀, 𝖳𝗀, 𝖴𝗉, 𝖵𝖾𝗋)

key space
nonce space

output space

verification
algorithm

tagging
algorithm

update
algorithm

We assume the identity space to be the set of all possible bitstrings, {0,1}*

Tagging algorithm

Update algorithm

Verification algorithm

t ← 𝖳𝗀(K, N, id, D)

t′ ← 𝖴𝗉(K, N, id, D, op, arg, t)

d ← 𝖵𝖾𝗋(K, id, D, t)

Verification does not use the nonce!

Takes the key, a nonce, the document ID, and
the document, and produces a tag

Takes the key, a nonce, the document ID, the document, the
edit details, and the original tag, and updates the tag

Takes the key, the document ID, the document, and the tag
and returns whether or not the verification succeeded

12

Nonces [RBBK01, Rog02]

13

algorithms are deterministic but take a nonce as input

non-repeating quantities that may be picked by an adversary

Randomized algorithms can be captured by picking the nonce at random and having the
algorithm use the nonce as the randomness

Stateful algorithms can be captured by letting the nonce be the state

Using nonces improves robustness by maintaining security for arbitrary (non-repeating)
nonces — precluding issues arising due to randomness failure

Nonces are widely used in various standards such as those for authenticated
encryption [RFC 5116] and in the TLS standard [RFC 5246, RFC 8446]

Nonce-based PRFs : allow for capturing more constructions, and increase applicability

Correctness of Updates

14

Tags generated by legitimate applications of the tagging and update algorithms
must be accepted by the verification algorithm

This should hold even if nonces
are repeated 𝖳𝗀K

𝖵𝖾𝗋K
document

nonces tag

𝖴𝗉Kop, arg tag
𝖵𝖾𝗋KEdit

updated document

Correctness of Updates

15

Tags generated by legitimate applications of the tagging and update algorithms
must be accepted by the verification algorithm

This should hold even if nonces are repeated

STRONG CORRECTNESS

Here, tags produced via the update algorithm must exactly match tags produced
by the tagging algorithm with the same nonce

Dnew = 𝖤𝖽(D, op, arg)

t = 𝖳𝗀(K, N′ , D)

t′ = 𝖴𝗉𝖽(K, N, D, op, arg, t)

t′ = 𝖳𝗀(K, N, Dnew)

where

We introduce this notion

𝖳𝗀K

document

nonce tag

𝖴𝗉K
op, arg

tagEdit

updated document

nonce

𝖳𝗀K

The value of this is that it allows updates to be dropped

The adversary wins if it makes a
VF query with a new document-id

pair and a tag that verifies

Incremental UF security

16

This corresponds to the notion of
basic security in [BGG95]

Game Giuf
𝗂𝖥,𝖣𝖤

The adversary is not allowed to
repeat nonces

For an id, UPD queries must be
made after an initial TAG query

The game captures the ability of an
adversary to generate a valid tag for
a new document after seeing the tags
for it’s choice of documents and
updates

Adviuf
𝗂𝖥,𝖣𝖤 (A) = Pr [Giuf

𝗂𝖥,𝖣𝖤(A)]

Incremental PRF security

17

Game Giprf
𝗂𝖥,𝖣𝖤

The adversary is not allowed to
repeat nonces

For an id, UPD queries must be
made after an initial TAG query

The adversary wins if it is able to
distinguish between the IPRF and a

random function

In the case of a random function,
the VF oracle always returns false

The game captures the ability of an
adversary to distinguish between an
IPRF and a random function after
seeing the outputs for it’s choice of
documents and updates

Adviprf
𝗂𝖥,𝖣𝖤 (A) = 2 ⋅ Pr [Giprf

𝗂𝖥,𝖣𝖤(A)] − 1

Why do we need to consider Updates separately? [BGG95]

The adversary may have access to previous versions of documents and their tags

Further, it may be able to issue edit commands to existing documents and obtain
new incremental signatures

This may allow for attacks that break schemes that cannot be broken when restricted to not using
the incremental update algorithm

DROPPING UPDATES

Updates can be dropped in the case where the scheme under consideration satisfies
strong correctness

This holds for both IUF and IPRF security

Calls for updates will be answered by updating the document, and
then using the tagging algorithm

19

Our IPRF security notion implies the IUF security notion

PREVIOUS DEFINITIONS
Regular setting (no nonces, no incrementality) — PRF ⟹ UF [BKR00, GGM86]

Nonce-based setting (no incrementality) — PRF ⇏ UF [PS16]

IPRF ⟹ IUF

Let be an incremental function family for document editing system
. Let be an adversary against IUF security of . Then we can

construct adversary against IPRF security of such that

𝗂𝖥
𝖣𝖤 Auf 𝗂𝖥

Aprf 𝗂𝖥

Adviprf
𝗂𝖥,𝖣𝖤 (Aprf) = Adviuf

𝗂𝖥,𝖣𝖤 (Auf)

 makes the same number of queries
as and has similar running time

Aprf
Auf

The benefit is that an incremental function family shown to satisfy IPRF security
can directly be used for message authentication

In order to achieve this implication, we include a verification oracle in our IPRF game

Single-document and Multi-document

20

We provide two transforms that take
a scheme that is secure in the single-
document setting, and return a
scheme secure in the multi-document
setting

StM1 PRF non-tight

StM2 hash function tight

Auxiliary tool Security ReductionTransform

Single-document scheme : when only one document is being edited

Multi-document scheme : when many documents, with different ids are being edited

definitions of [BGG94]

defined in [BGG95]
more useful in practice stronger

StM1
𝗂𝖥𝗌𝖽 𝗂𝖥𝗆𝖽F StM2

𝗂𝖥𝗌𝖽 𝗂𝖥𝗆𝖽H

Transform StM1

21

Kid ← F(K, id)Algorithm generates

Uses the single-document scheme with
the above different key for each distinct id

N

K

id

D

F Kid

𝗂𝖥sd . 𝖳𝗀 tag

𝗂𝖥md . 𝖳𝗀
𝗂𝖥md = StM1 [𝗂𝖥sd, F]

Let denote the multi-document iFF
constructed by the transform using , a single-
document iFF, and , a PRF.

𝗂𝖥md
𝗂𝖥sd

F

N

K
id

D

F Kid

𝗂𝖥sd . 𝖴𝗉𝖽 tag

𝗂𝖥md . 𝖴𝗉

op
arg
t

StM1
𝗂𝖥𝗌𝖽 𝗂𝖥𝗆𝖽F

D

K

id

t

F Kid

𝗂𝖥sd . 𝖵𝖾𝗋 true/false

𝗂𝖥md . 𝖵𝖾𝗋Adviprf
𝗂𝖥𝗆𝖽,𝖣𝖤 (A) ≤ q ⋅ Adviprf

𝗂𝖥𝗌𝖽,𝖣𝖤 (A1) + Advprf
F (B)

number of distinct
identities queried

The reduction is not tight
Similar result holds for IUF security

Given adversary against the IPRF security of relative to
, we can construct adversary against the IPRF security

of relative to and adversary against the PRF security
of such that

A 𝗂𝖥𝗆𝖽
𝖣𝖤 A1

𝗂𝖥𝗌𝖽 𝖣𝖤 B
F

N

id
K

H : 𝗇𝗅

𝗂𝖥sd . 𝖴𝗉𝖽

𝗂𝖥md . 𝖴𝗉

H : 𝖻𝗅

∥ N′

D
d

∥ D′

t
tag

Transform StM2

22

N

id
K

H : 𝗇𝗅

𝗂𝖥sd . 𝖳𝗀

𝗂𝖥md . 𝖳𝗀

𝗂𝖥md = StM2 [𝗂𝖥sd, H]

Let denote the multi-document iFF constructed
by the transform using , a single-document iFF,
and , a variable length hash function.

𝗂𝖥md
𝗂𝖥sd

H

Use the variable-length hash function to hash
the id and the nonce as follows

d ← H(id, 𝖻𝗅) N′ ← H(id∥N, 𝗇𝗅)
Prepend d to the start of the document

Use the single-document scheme with the
resulting document and the new nonce N’

H : 𝖻𝗅

∥ N′

D
d

∥ D′ tag

id
K

𝗂𝖥sd . 𝖵𝖾𝗋

𝗂𝖥md . 𝖵𝖾𝗋
H : 𝖻𝗅

D
d

∥ D′

t
true/false

OpTr
op
arg

op′

arg′

StM2
𝗂𝖥𝗌𝖽 𝗂𝖥𝗆𝖽H

Adviprf
𝗂𝖥𝗆𝖽,𝖣𝖤 (A) ≤ Adviprf

𝗂𝖥𝗌𝖽,𝖣𝖤 (A1) + Advcr
H,𝖻𝗅 (B1) + Advcr

H,𝗇𝗅 (B2)

The reduction is tight
Similar result holds for IUF security

Given adversary against the IPRF security of relative to
, we can construct adversary against the IPRF security

of relative to and adversaries against the
collision-resistance security of such that

A 𝗂𝖥𝗆𝖽
𝖣𝖤 A1

𝗂𝖥𝗌𝖽 𝖣𝖤 B1, B2
H

Edit operations must be translating

The Carter Wegman Paradigm [WC81]

23

The Carter Wegman paradigm is used to build message authentication schemes

key

UMAC [BHKKR99], GMAC [MV04], and VMAC [KD07] are some examples of popular message
authentication schemes that are based on the Carter Wegman paradigm

mask tag

𝖬𝖠𝖢
hash

function hmessage

nonce

AU security
of hash function

security
of mask+ UF security

of 𝖬𝖠𝖢

We use iHtE to extend the incrementality of to the
resulting incremental function family and also obtain
IPRF security for in the single-document setting.

𝗂𝖧𝖥
𝗂𝖥

𝗂𝖥

Let denote the iFF constructed by the transform using an incremental hash
function , a symmetric encryption scheme , and , a key distribution
function.

𝗂𝖥
𝗂𝖧𝖥 𝖲𝖤 𝖪𝖣𝖥

incremental-Hash-then-Encrypt (iHtE)

24

This is our extension of the Carter Wegman paradigm to the incremental setting

N
D 𝖲𝖤 . 𝖤𝗇𝖼

tag

𝗂𝖥 . 𝖳𝗀

𝗂𝖥 . 𝖴𝗉

𝗂𝖧𝖥 . 𝖧𝗌𝗁 h

t
𝖲𝖤 . 𝖣𝖾𝖼

𝗂𝖧𝖥 . 𝖴𝗉
hD

op
arg
N

h′

𝖲𝖤 . 𝖤𝗇𝖼
tag

NBE2 - nonces not needed for decryption
Necessary for performing updates𝗂𝖥

𝖪𝖣𝖥K
K𝖲𝖤

K𝗂𝖧𝖥

K𝖲𝖤
K𝗂𝖧𝖥

K𝗂𝖧𝖥
K𝖲𝖤

K𝖲𝖤

 uses the NBE2 syntax of [BNT19]𝖲𝖤
 is assumed to be incremental for a document editing system
 that includes the replace operation

𝗂𝖧𝖥
𝖣𝖤

CAU security
of 𝗂𝖧𝖥

AE2 security
of 𝖲𝖤+ IPRF security

of 𝗂𝖥

[Bel15] [BNT19]

Instantiations

25

We study existing message authentication schemes and use them to
construct incremental function families for the replace operation
For PMAC1 and PMAC, we obtain IPRF security directly
For XORMAC, GMAC, Poly1305-AES and PWC, we obtain
IUF security via the natural expression in our syntax

For the above schemes, we can extract an incremental hash
function, and then use the iHtE transform to get IPRF
security

The PMAC_Plus and ZMAC schemes are not incremental.
We extract an incremental hash function from these schemes
and then use the iHtE transform for IPRF security

iHtE𝗂𝖧𝖥 𝗂𝖥
𝖲𝖤

These require the nonce to be sent with the tag, hence IPRF
security does not hold

Summary

https://eprint.iacr.org/2020/1360
26

❖ We defined incremental function families within a nonce-based framework
❖ We introduced strong correctness of iFFs as a property to reduce proof complexity
❖ We defined notions of security (IUF and IPRF) for incremental function families
❖ We showed that IPRF security implies IUF security for an incremental function family
❖ We constructed two transforms that take a scheme secure for a single document, and

return a scheme secure for multiple documents
❖ This allows us to focus on building the easier, single-document schemes

❖ We constructed a transform that takes an incremental hash function, and return a
scheme that is IPRF secure for single documents for the replace operation
❖ This allows us to focus on building the incremental hash functions for this scenario

❖ We extract incremental hash functions from various existing message authentication
schemes, and use them to build secure IPRFs for the replace operation

