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Part 1.

From Disk Storage to Security Models
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Disk Storage

A

A 4

Read/Write data

0S Disk Volume
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Disk Storage: Write

0S

m Write data in disk
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n sectors

HENEN

Disk Volume

m Store data




Disk Storage: Read

n sectors

RN

O Disk Volume

m Read data in disk m Give back data

Raw R/W
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Disk Storage: Performance

0S

m Read/write speed is a priority (optimized)
m Competitive aspect for manufacturers

Raw R/W

n sectors

HENEN

Disk Volume
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Full Disk Encryption VS File Encryption

m File encryption m Full Disk Encryption
» File content is encrypted » All the data are encrypted
® Title, file size encrypted? ® Sector-based encryption
» User action » Transparent for the user
® Ask to encrypt a specific file ® Automatic
» Space for metadata > No space for metadata
® Better security using IV ® No IVs
® Integrity ® No Integrity
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Full Disk Encryption (FDE)

N i
P Y& 4
T \—/

Encryption
0S

m Read and write: atomic operations

» A sector is encrypted independently from the others
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n sectors

N

Disk Volume




Full Disk Encryption (FDE)

n sectors

L]
NN

Encryption
(ON) Disk Volume

m Length preserving encryption (no metadata)

m Deterministic encryption

Raw R/W FDE
+
t
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FDE schemes

K m Symmetric encryption (speed)
l > Blockciphers (AES)
» Sector size > blockcipher input size

7/43



FDE schemes

K m Symmetric encryption (speed)
l > Blockciphers (AES)
» Sector size > blockcipher input size
s ol m FDE Modes of operation
é%{é% c > Length preserving modes

m > Tweak s used to enhance security

7/43



FDE schemes

K m Symmetric encryption (speed)
l > Blockciphers (AES)
> Sector size > blockcipher input size
S~ o i m FDE Modes of operation
b E[@ % c > Length preserving modes .
m EoE e e > Tweak s used to enhance security

m Security proofs [K., Mouha, Vergnaud]

» Reduction to blockcipher security
» Different security notions

7/43



FDE schemes

K m Symmetric encryption (speed)
l > Blockciphers (AES)
» Sector size > blockcipher input size

m FDE Modes of operation

s
& | e | || e
j{ ? ? I 9 > Length preserving modes
m s e s o |

> Tweak s used to enhance security

m Security proofs [K., Mouha, Vergnaud]
» Reduction to blockcipher security
» Different security notions
m Examples (dm-crypt)
» CBC-ESSIV
> XTS (based on XEX)
> Adiantum (new)

FDE tools: no control of what is stored! ‘
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Full Disk Encryption and KDM security

m Atypical scenario can happen

» The key can be stored in the disk
> A (weird) function of the key can be stored

€

Key-Dependent Message security Model
m Security analysis with an adversary that can ask to encrypt the key
m Key-Alternating Feistel ciphers [Farshim, K., Seurin, Vergnaud]
m Even-Mansour ciphers [Farshim, K., Vergnaud]

Part 2.
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Incremental MACs and "FDE"

Integrity — outside "FDE" Model!
How to get integrity with a minimal impact on performance?

m Authenticated Disk Encryption (ADE)

» Ensures sector content integrity
» MAC for each sector (a local tag/sector)
» dm-integrity (Linux Kernel)
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Authenticated Disk Encryption

Authenticated
Decryption n sectors

P

0Ss Disk Volume

m Read a sector in disk m Give back sector content

Raw R/W FDE ADE
+ +
t t
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Authenticated Disk Encryption

Authenticated
Encryption n sectors

0Ss Disk Volume

m Write a sector in disk m Store sector content

Raw R/W FDE ADE
+ +
t t
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Authenticated Disk Encryption

Confidentiality
4_
Integrity

oS

Raw R/W FDE ADE
+ +
t t

n sectors

Disk Volume
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Incremental MACs and “FDE"
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Integrity — outside “FDE” Model!
How to get integrity with a minimal impact on performance?

m Authenticated Disk Encryption (ADE)

» Ensures sector content integrity,
» MAC for each sector (a local tag/sector)
» dm-integrity (Linux Kernel)

Does not prevent replay-attacks!



Incremental MACs and “FDE"

Integrity — outside “FDE” Model!
How to get integrity with a minimal impact on performance?

m Authenticated Disk Encryption (ADE)

» Ensures sector content integrity,
» MAC for each sector (a local tag/sector)
» dm-integrity (Linux Kernel)

Does not prevent replay-attacks!
m Fully Authenticated Disk Encryption (FADE)

» Prevent replay-attacks
» Ensures local tags integrity
» MAC over all the local tags (global tag/disk)
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Fully Authenticated Disk Encryption

n sectors
Secure Memory

§ =

0Ss Disk Volume

m Global tag = MAC over local tags
m Global tag in Secure memory (small)

m MAC is too expensive

Raw R/W FDE ADE FADE
+ + + +
t t t *
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Fully Authenticated Disk Encryption

Secure Memory

.

(01

m Global tag = MAC over local tags

m Global tag in Secure memory (small)

m MAC-istoo-expensive Incremental MACs

Raw R/W FDE  ADE

n sectors

Disk Volume

FADE
*

12/43




Fully Authenticated Disk Encryption

Secure Memory

n sectors

0 |

PO Confidentiality
S
ik Integrity
+
oS Anti-replay

m Global tag = MAC over local tags

m Global tag in Secure memory (small)

m MAC-istoo-expensive Incremental MACs

Disk Volume

Part 3.

Raw R/W FDE ADE FADE
+ + + +
t t t *
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Part 2.

Key-Dependent Message (KDM) Security
Even-Mansour Ciphers
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Security Analysis
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m Robustness against an arbitrary adversary?

Ex




Security Analysis
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m Robustness against specific attacks?
» Specific to a blockcipher and not enough
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m Robustness against generic attacks?
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Security Analysis

m Robustness against an arbitrary adversary?

m Robustness against specific attacks?
» Specific to a blockcipher and not enough

m Robustness against generic attacks?
» Feasible: Internal primitives idealized

Security Proof

»> Modeled by a game: adversary/challenger
» Adversary model (power)

14/43
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Indistinguishability game

(b=0) Real world (b=1) Random world

S
E‘ﬁ
ﬂ

0
Chosen Plaintext Attack (CPA) adversary

Adv = | Pr[A — 1|Real] - Pr[A — 1|Random] |
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Indistinguishability game

(b=0) Real world (b=1) Random world

0/1
Chosen Ciphertext Attack (CCA) adversary

Adv = | Pr[A — 1|Real] - Pr[A — 1|Random] |
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KDM security: Indistinguishability game

(b=0) Real world

function ¢ ‘3 ’EK(QS (K))

WA
|
/1

0

(b=1) Random world

KDM-CPA adversary

Adv = | Pr[A — 1|Real] -

15/43
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KDM security: Indistinguishability game

(b=0) Real world

(b=1) Random world

0/1
KDM-CCA adversary ("Standard" decryption)

Adv = | Pr[A — 1|Real] - Pr[A — 1|Random] |
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KDM security: Indistinguishability game

(b=0) Real world

(b=1) Random world

0/1

Forbidden queries: Repeat queries, Enc/Dec oracle's answers
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Key Dependent Message Security analysis

m Find the largest set ® of functions ¢ such that Adv is small
» Including constant functions

m What if ® is not restricted?
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Key Dependent Message Security analysis

m Find the largest set ® of functions ¢ such that Adv is small
» Including constant functions

m What if ® is not restricted?

Example: Projections
$1(K)=(K &0..01) =

If K =771 then ¢1(K) =0...01
If K =770 then ¢1(K) =0...00

Using ¢» and ¢3 such that:
$2(K)=10...01 -
¢3(K) =0...00 — c3
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Key Dependent Message Security analysis

m Find the largest set ® of functions ¢ such that Adv is small
» Including constant functions

m What if ® is not restricted?

Example: Projections If c1 = ¢ then

1 (K)=(K &0..01) - ¢ K =771 otherwise K =770
If K =771 then ¢1(K) =0...01 _

If K =770 then ¢1(K) = 0...00 Last bit recovered!!

Using ¢» and ¢3 such that:
$2(K)=10...01 -
¢3(K) =0...00 — c3
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Key Dependent Message Security analysis

m Find the largest set ® of functions ¢ such that Adv is small
» Including constant functions

m What if ® is not restricted?

Example: Projections If c1 = ¢ then

1 (K)=(K &0..01) - ¢ K =771 otherwise K =770
If K =771 then ¢1(K) =0...01 _

If K =770 then ¢1(K) = 0...00 Last bit recovered!!

Using ¢» and ¢3 such that:
$2(K)=10...01 - Key bits can be recovered one by onel!
¢3(K) =0...00 — c3

’KDI\/I set ® has to be restricted. ‘
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KDM set restriction: Claw-freeness

Claw-freeness of a set ®: V ¢1 # ¢, Pr[p1(K) = ¢2(K)] is small.

KDM security:
m |deal-Cipher KDM-secure under claw-free sets
» [Farshim, K., Vergnaud].

m What about Even-Mansour ciphers?
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Even-Mansour ciphers

ki k>
L)

m

(7]
G

m Configuration:

» r rounds

> r permutations (= or #)
» Key schedule:

® r+1 keys (= or #)

m Previous security analysis
> Indistinguishability
> Related-key attack
> Indifferentiability

® r+1 keys derivated from a master key

m Examples:

> AES, SERPENT, PRESENT ...
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Securiy analysis: Random permutation model

(b=0) Real world

(b=1) Random world

A

P; uniformly random permutations,

A

KDM functions are oracle-independent (¢ ¢ KDM set @)
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KDM attack: 1-round Even-Mansour

A claw-free set ® not always enough...

K, K,
$(K) dLJ @ % c
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KDM attack: 1-round Even-Mansour

A claw-free set ® not always enough...

Ki K>

K, dLJ @ % P(0) & Ko x@y

m Step 1. Challenge query ¢(Ki||K2) = Ki — ¢ =P(0) @ Kz
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KDM attack: 1-round Even-Mansour

A claw-free set ® not always enough...

Ki K>

Ky \i, @ @L, PO &K 0 @ P(0)

m Step 1. Challenge query ¢(Ki||K2) = Ki — ¢ =P(0) @ Kz
m Step 2. Direct query to P x =0 — y = P(0)
m Step 3. A computes Kn = c Py

Key extraction attack by a KDM adversary.
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KDM security analysis: 2-round Even-Mansour
Real world

2

Ki K: Ks
raro:s
A

A
#(K) ——{Ps] c
P=={P,P7} Random world

Restrictions on KDM set ® to have KDM security?
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KDM Security Analysis: Game playing

(Gp) Real world (Gn) Random world

&

P

Pri= Pr[A sets bad in G;]

m Adversary goal:
» Trig bad events: distinguish real world from random world

m Fundamental lemma of game playing: Adv < > Pr;
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KDM security analysis: Splitting and forgetting technique

Real world

K 2

1 K K3
oo
S

&L
#(K) ——{Ps] c
R R
s

+ -1
P=={P,P7} Random world

Application to 2r-EM same permutations, independent keys.
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KDM security analysis: Splitting and forgetting technique

“Oracle split” Game 1
K 2

1 K K3
¢ éﬁ m

L
oK) ——{Ps] c
e
s

+ -1
P=={P,P7} Random world

Game 1: Replace last P, P! with independent random permutations
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KDM security analysis: Splitting and forgetting technique

“Oracle forget” Game 2

K 2

1 K K3
¢ éﬁ m

&L
oK) ——{Ps] c
e
s

+ -1
P=={P,P7} Random world

Game 2: Replace last P’, P” with forgetful random oracles $
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KDM security analysis: Splitting and forgetting technique
Game 2

Kl K2 K3
@

PRP/PRF switching lemma

&L T T
oK) ——{Ps] c
e
s

+ -1
P=={P,P7} Random world
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KDM security analysis: Splitting and forgetting technique

Game 2 ~ Random world

Ki K> K3

w0 (@

Ks K> K1 Fs
@

+ -1
P=={P,P7} Random world

’Analysis of real world/~ random world?‘
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Splitting and forgetting technique

P:I:
Real world P= K
K K, K
oK) 2 P ° P e )

P B|K
~ Random world
\_ A

Simulator B for challenge queries
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KDM security analysis: Splitting and forgetting technique

Real world ~ Random world

i

+ +
N 7\ \\ _

Pry Isrj, |5r’7+'1 Pr,
m Bad events between real world and =~ random world:
» Reduction to adv “splitting game”
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KDM security analysis: Splitting and forgetting technique

Real world ~ Random world

i

+ +
N 7\ \\ _

Pry Isrj, |5r’7+'1 Pr,
m Bad events between real world and ~ random world:

» Reduction to adv “splitting game”
> Pr[sp] (splitting events type 1 and 2)
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KDM security analysis: Splitting and forgetting technique

Real world ~ Random world

i

A Pry Isrj, - |5r7,'+'1’ Pr,
m Bad events between real world and =~ random world:
» Reduction to adv “splitting game”

> Pr[sp] (splitting events type 1 and 2)
» Reduction to adv “forgetful switching game”

A A
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KDM security analysis: Splitting and forgetting technique

Real world ~ Random world

i

Pry Pr; Prii1 Pr,
m Bad events between real world and ~ random world:
» Reduction to adv “splitting game”
> Pr[sp] (splitting events type 1 and 2)
» Reduction to adv “forgetful switching game”
> Pr[fg] (forgetful events)

25/43



Splitting and forgetting technique

K, Ky K3

Real world S o) {7 oAb
K3 Ky K

e —d (o F b m

~ Random world

Adv(A) < 182/2" + ¢2(2 - Adv< (A1) + Adv™(A,))
when g, = g

offset-xor function: ¢(K) = K; @ K; ® A
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Results: Even-Mansour

Rounds Permutations Key schedule KDM set

1 P K; = cf A offset
2 P,‘ 75 K,' = cf

2 Pp = (K5 == cf A ox

2 P, = K= cf A offset?
3 P;, = K; = cf A offset?
3 P,‘ == K,' 75 cf

Security proofs [Farshim, K., Vergnaud]
On going work

Previous example
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Results: Even-Mansour

Rounds Permutations Key schedule

1 P
2 P; #
2 P =
2 P =
3 P =
3 P, —

Security proofs [Farshim, K.,

On going work

27/43

K; =

X XXX
[N

b Nl

KDM set
cf A offset
cf
cf A ox
cf A offset?
cf A offset?
cf

Vergnaud]

IC KDM security level




Results: Even-Mansour

Rounds Permutations Key schedule KDM set

1

> P; -
P; = cf A ox

[N
X X

3 P = Ki # cf

Security proofs [Farshim, K., Vergnaud]
On going work
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Results: Key-Alternating Feistel

Rounds Functions Keys schedule KDM set
4 F= K1,0,0, Ky cf Aoffset A ox
4 Fi # K # cf A offset?
5 F, = K # cf A offset?
? Fi = K,' ;é cf

Security proof based on H-coefficient technique
[Farshim, K., Seurin and Vergnaud]

Conjectures.

Open question: How many rounds with the same
function needed to have KDM-security for a cf-set?
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Part 3.

Incremental MACs
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Classical MAC algorithm

Document D

30/43

Document D’

Modification

¢ Update expensive!
Doc length dependent



Incremental Cryptography: MAC

m Generate a tag t of a document D,
m For each edition, the tag t is updated
» Update in time dependent of modification size

» Update time < MAC time
2 syt
3 %
X\*
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Incremental MACs: the idea

Document D
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Incremental MACs: the idea

Document D

== () () (&) (@)
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Incremental MACs: the idea

Document D

== L) () (&) (@)

hh @ h @& hys © hy
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Incremental MACs: the idea

Document D

== L) () (&) (@)

= h @& h & h O h

32/43



Incremental Cryptography: MAC

Document D’

33/43



Incremental Cryptography: MAC

Document D’

DOC

) (&) (@) (@)
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Incremental Cryptography: MAC

Document D’

DOC @

h' @ t
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Incremental Cryptography: MAC

Document D’

ho @ hy' @

33/43

t



Incremental Cryptography: MAC

Document D’

t = ho @ hy’ © t

Tag independent from block order!
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Incremental MAC

An algorithm is incremental regarding specific update operations.
m Insert

m Delete

m Replace (possible using the previous operations)

An update operation must be cheaper than recomputing a tag from
scratch.

[BGG] Incremental Cryptography and Application to virus protection,
Bellare, Goldreich, Goldwasser (1995):

m Security notions: basic security and tamper-proof security
m Chained Xor-Scheme (basic secure)
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Security Notion 1: Basic Security Model [BGG|

L={) /\ n
MAC
x Update

Verlfy

A

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

Dl
Lo={ /—\ n
MAC
x Update

Verlfy

A

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

o R
MAC
x Update

Verlfy

A

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

D2

S
t

MAC

\/ Update

Verlfy

A

Notations: D' (i-th document) and D; (j-th document block)

35/43



Security Notion 1: Basic Security Model [BGG|

e @

MAC

Update
\\\\\\\\\\\\\\f3-f_-_-————"

Verlfy

A

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

e @
MAC
\/ Update

Invalid (
Valid ( ) Verlfy

A

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

R
op = Delete first block MAC
op, (D?, t2) N
Valid couple (
\/ Update

Only valid couples are updatable‘ Venfy

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

£ :={D', D% D3} /—\~ g
: MAC

op = Delete first block

D3 == op(D2) Op (D2 t2) N
Valid couple ( 3
\/ Update

Only valid couples are updatable‘ Venfy

Notations: D' (i-th document) and D; (j-th document block)
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Security Notion 1: Basic Security Model [BGG|

L£:={D',D? D3, ... D9} g

MAC
Winning conditions: :V - I 5 g
A - (D*7 t*) SUCh that: ah Coupe

m Verify(D*, t*) returns 1, Update
m D" ¢ L.
Only valid couples are updatable Venfy

Notations: D' (i-th document) and D; (j-th document block)
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Chained Xor-Scheme [BGG]

m Pair block chaining algorithm m In: Document D (n blocks D;)

> F:Kg x {0,1}?¢ = {0,1}% = Out: Tag t such that t = (r,7)
> P:Kp x {0,1}F — {0,1}t

DO Dl D2 D3 e D’n72 D'nfl

1 1 1 1 1 1
To *’@ 1 4’@ T2 *’@ r3 4’@ Tn—2 9@ Tn—1

Ry Ry Ry R E R, R,

\\/\/\/\v
hl h2 h3 h4
g\ U g\

r=rnllnll...||m-1and |ri|=¢—b
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Simple forgery strategy

1)1 l)g T l)n—Q l)nfl

Cancellation Strategy:
m A asks a MAC on any document D and receives t = (r, )
m Goal: Play with D to build D* such that X = X*

[K. and Vergnaud]
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Example: 3-block document D

D = Dy||D1|| D2
t = (r,7) such that r := ry||n||r2 (Ri = Djl|r)

(Ro, R1) (R, R2)

{ {
h @ ho = ¥
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Example: 3-block document D

D = Dy||D1|| D2
t = (r,7) such that r := ry||n||r2 (Ri = Djl|r)
(Ro, R1) (R, R2)

1 \

h ® ha = X

Build D* and r* such that :

38/43



Attack Example: 3-block document D

D = Dy||D1||D2 and R; = Dj|r;
t = (r,7) such that r := ry||n||r2

Build D* and r* such that:

(Ro,R1) (Ri,R2) (RoyR1) (Ri,R) (RosRi)  (RiyRw)
{ { { { { {

hy b b b b he =

=0

D* = DOHDIHD2||D1HD2HD1HD2 T =1 and t* = (r*,T*)
r* = ro||r||r2|[ri||r2 [ ra]|r2 (D*,t*) # (D, t)

39/43
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Attack Example: 3-block document D

D = Dy||D1||D2 and R; = Dj|r;
t = (r,7) such that r := ry||n||r2

Build D* and r* such that:

(Ro,R1) (R, R2)  (RasR1) (R, R2)  (Re,Ri)  (Ri, Ro)

3 1 1 1 \ 1
hy b b b b hy =
=0
D* = DOHDIHD2”D1HD2HD1HD2 7™ =7 and t* = (r*,T*)
r* = nol[nl[r2|[ ]| r2]|r1||r2 (D*,t*) # (D, )

More attacks in the thesis.
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Modified Xor-Scheme 2

l)o l)l l)g l)g ce l)nA,l n

i i i i i |

To *}@ 71 @ T2 *}@ T3 @ Trn—1 »@ Tn @
R() Rl RZ RS o Rn—l Rn

\\/\/\/\ \/
PPED
h1 ho h3 hy h

D % D D T

m A fresh value r, for each update operation

m The random value r, is necessary!

Basic secure scheme
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Security Notion 2: Tamper-proof Security Model [BGG|

/\ MAC
Winning conditions: Any couple (D, t)! e

A — (D*,t") such that:

Update
m Verify(D*, t*) returns 1
mD"¢L

Verlfy

L=
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Security Notion 2: Tamper-proof Security Model [BGG|

= g
/_\ MAC
Winning conditions: Any couple (D, t)! g

A — (D*, t") such that:

Update
m Verify(D*, t*) returns 1
mD"¢L

Verlfy

L=
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Security Notion 2: Tamper-proof Security Model [BGG|

/\ g
MAC
Winning conditions: Any couple (D, t)! g

A — (D*,t") such that:

Update
m Verify(D*, t*) returns 1
mD"¢L

Verlfy

L :={D'}
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Security Notion 2: Tamper-proof Security Model [BGG|

L= {Dl, DlDQ} D1D2 g
/\

MAC

Winning conditions: Any couple (D, t)! g

A — (D*,t") such that:

Update
m Verify(D*, t*) returns 1
mD"¢L

Verlfy
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Security Notion 2: Tamper-proof Security Model [BGG|

L:= {Dl, DlDQ}

op = Replace block 1 by Dy’ ,/\

D* = op(?)

Winning conditions: Any couple (D, t)!

A — (D*, t") such that:

Update
m Verify(D*, t*) returns 1
m D" ¢L

Verlfy
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Security Notion 2: Tamper-proof Security Model [BGG|

L:={D', D,D,, D,D}?}

op = Replace block 1 by Dy’ /—\A

D* = op(?)

Winning conditions: Any couple (D, t)! 3

A — (D, t* h that:
( ) such tha Update
m Verify(D*, t*) returns 1
m D" ¢L

Verlfy
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Security Notion 2: Tamper-proof Security Model [BGG|

L:={D', D,D,, D,D}?}

or D{ D57 or both?} /—\* g
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D3 = op(?)

2
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Security Notion 2: Tamper-proof Security Model [BGG|

L:={D', D,D,, D,D}?}

or D{ D57 or both?} /_\~ g
op = Replace block 1 by Dy’

D3 = op(?)

2
P C)p ([)1 [)2, t _
Winning conditions: Any couple (D, t)! 3

A — (D*, t* h that:
( ) such tha Update
m Verify(D*, t*) returns 1
m D" ¢L

But how to build £7?
How can we track each document? Verlfy
No game definition...

= Introduction of the document identification number id
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New Framework for iMAC

m Document identification number id

» Single-document SD id = ¢,

» Multi-document (

One MAC call/id

\/ Update

Verlfy

A
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New Framework for iMAC

m Document identification number id

» Single-document SD id = ¢,
» Multi-document (
One MAC call/id
X/ Update
m Incremental UnForgeability (IUF)

> Type 1 (IUF1) = Basic Security
» Type 2 (IUF2) ~ Tamper-proof Security Verlfy

A
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Security game |UF1

m Definition close to Basic security

m List £ /\ 9

1 D' D2

2 pl p2 id, Op,
3 pt g
m For each id Update
» Last version of the document
updated

m Winning conditions:
A — (id, D*, t*) such that:
> Verify (id, D*, t*) returns 1,
> (id,D*) ¢ L.

A

Verlfy
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Security game [UF2

m Definition close to Tamper-proof security

m List £ /\
1 D'— D?
2 Di — D? id, op, (D, t) 9
3 D - -
W

m For each id

A Update
» tag: Computed with D
> List: Filled with op(D;q)

m Winning conditions:
A — (id, D*, t*) such that: Verlfy
> Verify (id, D*, t*) returns 1,
> (id,D*) ¢ L.
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Security game IUFR ("Replay")

m IUFIR or IUF2R

m List £ (last doc/ id) /\ 9
1 Df
2 D* id, op,
g
W
m Winning conditions: A Update
A — (id, D*, t*) such that:
> Verify (id, D*, t*) returns 1, X/
> (id,D*) ¢ L.

Verlfy

A

’ FADE mechanism ‘
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Security game IUFR ("Replay")

m IUFIR or IUF2R id, .
m List £ (last doc/ id) /\ g
- AC \

D* id, op, (.,.)
3 pi < > - st
W
m Winning conditions: A Update
A — (id, D*, t*) such that: id, ()

> Verify (id, D*, t*) returns 1, T

> (id,D*) ¢ L.
m Stateful Schemes only Verify

» (Secure memory) ’FADE o ‘
mechanism
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Results: Constructions
Oflv  11]|Dx 1[2]|D2 1][3[|D3  ---  1[|nb|[Dnp

PEBE
ho h hy h3

From a basic secure Xor-MAC to a IUF1R-MD construction.
m Xor-MAC is basic secure

P> "Xor-MACs: New Methods for Message Authentication Using Finite
Pseudorandom Functions", Bellare, Guérin, Rogaway.

m Basic security = IUF1-SD
m A construction IUF1IR-MD

» Generic construct.: SD to MD
» Generic construct.: IlUFx to IUFxR

[Arte, Bellare, K. and Vergnaud]
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Oflv  11]|Dx 1[2]|D2 1][3[|D3  ---  1[|nb|[Dnp

PEBE
ho h hy h3

From a basic secure Xor-MAC to a IUF1R-MD construction.
m Xor-MAC is basic secure

P> "Xor-MACs: New Methods for Message Authentication Using Finite
Pseudorandom Functions", Bellare, Guérin, Rogaway.

m Basic security = IUF1-SD
m A construction IUF1IR-MD

» Generic construct.: SD to MD
» Generic construct.: IlUFx to IUFxR Not IUF2

[Arte, Bellare, K. and Vergnaud]
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Results: Constructions

0 o

Ry

From an IUF2-SD secure Xor-Scheme to I[UF2R-MD secure construction.

m Xor-Scheme proved IUF2-SD
m A I[UF2R-MD secure construction

» Generic construct.: SD to MD,
» Generic construct.: lUFx to IUFxR.

[Arte, Bellare, K. and Vergnaud].
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Results: Constructions

0 o

Ry

From an IUF2-SD secure Xor-Scheme to I[UF2R-MD secure construction.

m Xor-Scheme proved IUF2-SD

m A I[UF2R-MD secure construction - -
’ Strongest security notion ‘

» Generic construct.: SD to MD,
» Generic construct.: lUFx to IUFxR.

[Arte, Bellare, K. and Vergnaud].
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Conclusion

m KDM security:
» Forgetting and splitting (application EM)
» H-coefficient technique (application KAF)
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» Generic constructions,
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Conclusion

m KDM security:
> Forgetting and splitting (application EM)
» H-coefficient technique (application KAF)
» Minimal KAF configuration KDM secure under a claw-free set
» Application to other schemes?
m Incremental MACs
» Security notions and Relations among security notions,
» Generic constructions,
» An IUF2R-MD secure construction
® Tag too large,
® Greedy in randomness.
» More efficient schemes (time/storage)?
® Can we build such a scheme 7
» What about implementation?
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Thank you for your attention!

Full Disk Encryption and Beyond

Monday, 15 July 2019

@ Louiza Khati
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Contributions

m FDE: Bridging theory and practice, RSA 2017
» K., Mouha and Vergnaud.
m Even-Mansour cipher under KDM security, FSE 2018
» Farshim, K. and Vergnaud
m KDM-Security of Key-Alternating Feistel Ciphers
» Farshim, K., Seurin and Vergnaud
m Analysis and improvement of an incremental scheme, SAC 2018
» K. and Vergnaud
m Incremental MACs
» Arte, Bellare, K. and Vergnaud.
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Relations among security notions

IUF1-SD —/——— |UF1-MD

—1__——— IUF2-SD &———— |UF2-MD

IUF-BS —]| —

N

I[UF1R-SD IUF1IR-MD

IUF2R-SD ———= IUF2R-MD

49/43



Splitting and forgetting technique

K, Ky K3

Real world S o) {7 oAb
K3 Ky K

e —d (o F b m

~ Random world

Adv(A) < 182/2" + ¢2(2 - Adv< (A1) + Adv™(A,))
when g, = g

offset-xor function: ¢(K) = K; @ K; ® A
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Splitting and forgetting technique

Real world

~ Random world

2-round Even-Mansour
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Splitting and forgetting technique

Real world P= %

K K> K3
p+ ¢ AH%FH P 4a$4» P 4%%%49ﬂ
K K K3
e 444£4a P 44£4» p- 4ﬁ4%4+:n
A< K K Ky
o—-{P oG4
K3 Ky K,

~ Random world

Pi

Splitting game
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Splitting and forgetting technique

Real world
K K> K
p+ ¢ AH%FH P 4*&4) > AA%FAAv
K3 K Ky

~ Random world

Forgetful switching game
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Splitting and forgetting technique

Real world

~ Random world
Forgetful events L A

46/43



Splitting and forgetting technique

Real world

~ Random world

Splitting events 1
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Tspl
P ——B|K
spl
A
spl




Splitting and forgetting technique

sp2
Real world P= K

~ Random world
Splitting events 2 L A
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Splitting and forgetting technique

Real world

Pi

-

when g, = g

Adv(A) < 18¢%/2" + q?(2 - Adv (A1) + Adv™(Az))

offset-xor function: ¢(K) = Ki ® K; & A

~ Random world
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