Full Disk Encryption and Beyond

Monday, 15 July 2019

Outline

- Part 1. From disk storage to security models
- Part 2. Key dependent-message security of Even-Mansour ciphers
- Part 3. Incremental MACs

Part 1.

From Disk Storage to Security Models

Disk Storage

Disk Storage: Write

Disk Storage: Read

4/43

Disk Storage: Performance

- Read/write speed is a priority (optimized)
- Competitive aspect for manufacturers

Full Disk Encryption VS File Encryption

- File encryption
 - File content is encrypted
 - Title, file size encrypted?
 - User action
 - Ask to encrypt a specific file
 - Space for metadata
 - Better security using IV
 - Integrity

- Full Disk Encryption
 - All the data are encrypted
 - Sector-based encryption
 - Transparent for the user
 - Automatic
 - No space for metadata
 - No IVs
 - No Integrity

Full Disk Encryption (FDE)

- Read and write: atomic operations
 - A sector is encrypted independently from the others

Full Disk Encryption (FDE)

- Length preserving encryption (no metadata)
- Deterministic encryption

- Symmetric encryption (speed)
 - ► Blockciphers (AES)
 - ► Sector size > blockcipher input size

- Symmetric encryption (speed)
 - ► Blockciphers (AES)
 - ► Sector size > blockcipher input size
- FDE Modes of operation
 - ► Length preserving modes
 - ► Tweak s used to enhance security

- Symmetric encryption (speed)
 - Blockciphers (AES)
 - Sector size > blockcipher input size
- FDE Modes of operation
 - Length preserving modes
 - Tweak s used to enhance security
- Security proofs [K., Mouha, Vergnaud]
 - Reduction to blockcipher security
 - Different security notions

- Symmetric encryption (speed)
 - Blockciphers (AES)
 - Sector size > blockcipher input size
- FDE Modes of operation
 - Length preserving modes
 - ► Tweak s used to enhance security
- Security proofs [K., Mouha, Vergnaud]
 - Reduction to blockcipher security
 - Different security notions
- Examples (dm-crypt)
 - CBC-ESSIV
 - XTS (based on XEX)
 - Adiantum (new)

FDE tools: no control of what is stored!

Full Disk Encryption and KDM security

- Atypical scenario can happen
 - The key can be stored in the disk
 - A (weird) function of the key can be stored

Key-Dependent Message security Model

- Security analysis with an adversary that can ask to encrypt the key
- Key-Alternating Feistel ciphers [Farshim, K., Seurin, Vergnaud]
- Even-Mansour ciphers [Farshim, K., Vergnaud]

Part 2.

Incremental MACs and "FDE"

Integrity \rightarrow outside "FDE" Model! How to get integrity with a minimal impact on performance?

- Authenticated Disk Encryption (ADE)
 - Ensures sector content integrity
 - MAC for each sector (a local tag/sector)
 - dm-integrity (Linux Kernel)

Authenticated Disk Encryption

Authenticated Decryption

OS

■ Read a sector in disk

n sectors

Disk Volume

■ Give back sector content

Authenticated Disk Encryption

Authenticated Encryption

OS

■ Write a sector in disk

n sectors

Disk Volume

■ Store sector content

Authenticated Disk Encryption

Confidentiality + Integrity n sectors

OS

Disk Volume

Incremental MACs and "FDE"

Integrity \rightarrow outside "FDE" Model! How to get integrity with a minimal impact on performance?

- Authenticated Disk Encryption (ADE)
 - Ensures sector content integrity,
 - ► MAC for each sector (a local tag/sector)
 - dm-integrity (Linux Kernel)

Does not prevent replay-attacks!

Incremental MACs and "FDE"

Integrity \rightarrow outside "FDE" Model! How to get integrity with a minimal impact on performance?

- Authenticated Disk Encryption (ADE)
 - Ensures sector content integrity,
 - ► MAC for each sector (a local tag/sector)
 - dm-integrity (Linux Kernel)

Does not prevent replay-attacks!

- Fully Authenticated Disk Encryption (FADE)
 - Prevent replay-attacks
 - Ensures local tags integrity
 - MAC over all the local tags (global tag/disk)

Fully Authenticated Disk Encryption

Secure Memory

n sectors

OS

Disk Volume

- Global tag = MAC over local tags
- Global tag in Secure memory (small)
- MAC is too expensive

Fully Authenticated Disk Encryption

Secure Memory

n sectors

OS

Disk Volume

- Global tag = MAC over local tags
- Global tag in Secure memory (small)
- MAC is too expensive Incremental MACs

Fully Authenticated Disk Encryption

- Global tag = MAC over local tags
- Global tag in Secure memory (small)
- MAC is too expensive Incremental MACs

Part 3.

Part 2.

Key-Dependent Message (KDM) Security Even-Mansour Ciphers

■ Robustness against an arbitrary adversary?

- Robustness against an arbitrary adversary?
- Robustness against specific attacks?
 - Specific to a blockcipher and not enough

- Robustness against an arbitrary adversary?
- Robustness against specific attacks?
 - Specific to a blockcipher and not enough

Robustness against an arbitrary adversary?

 $\mathsf{E}_{\mathcal{K}}$

- Robustness against specific attacks?
 - Specific to a blockcipher and not enough
- Robustness against generic attacks?
 - ► Feasible: Internal primitives idealized

Robustness against an arbitrary adversary?

 $\mathsf{E}_{\mathcal{K}}$

- Robustness against specific attacks?
 - Specific to a blockcipher and not enough
- Robustness against generic attacks?
 - Feasible: Internal primitives idealized
- Security Proof
 - Modeled by a game: adversary/challenger
 - Adversary model (power)

Indistinguishability game

Chosen Plaintext Attack (CPA) adversary

$$\mathsf{Adv} = | \mathsf{Pr}[\mathcal{A} o 1 | \mathsf{Real}] - \mathsf{Pr}[\mathcal{A} o 1 | \mathsf{Random}] |$$

Indistinguishability game

Chosen Ciphertext Attack (CCA) adversary

$$\mathsf{Adv} = | \; \mathsf{Pr}[\mathcal{A} o 1 | \mathsf{Real}] \; ext{-} \; \mathsf{Pr}[\mathcal{A} o 1 | \mathsf{Random}] \; | \;$$

KDM security: Indistinguishability game

KDM-CPA adversary

$$\mathsf{Adv} = |\mathsf{Pr}[\mathcal{A} o 1|\mathsf{Real}] - \mathsf{Pr}[\mathcal{A} o 1|\mathsf{Random}]|$$

KDM security: Indistinguishability game

KDM-CCA adversary ("Standard" decryption)

$$\mathsf{Adv} = | \mathsf{Pr}[\mathcal{A} \to 1 | \mathsf{Real}] - \mathsf{Pr}[\mathcal{A} \to 1 | \mathsf{Random}] |$$

KDM security: Indistinguishability game

Forbidden queries: Repeat queries, Enc/Dec oracle's answers

Key Dependent Message Security analysis

- lacksquare Find the largest set Φ of functions ϕ such that Adv is small
 - ► Including constant functions
- What if Φ is not restricted?

- Find the largest set Φ of functions φ such that Adv is small
 Including constant functions
- What if Φ is not restricted?

```
Example: Projections \phi_1(K) = (K \& 0...01)
If K = ?? 1 then \phi_1(K) = 0...01
If K = ?? 0 then \phi_1(K) = 0...00
```

- Find the largest set Φ of functions φ such that Adv is small
 Including constant functions
- \blacksquare What if Φ is not restricted?

```
Example: Projections \phi_1(K) = (K \& 0...01)
If K = ?? 1 then \phi_1(K) = 0...01
If K = ?? 0 then \phi_1(K) = 0...00
```

Using ϕ_2 and ϕ_3 such that: $\phi_2(K)=0...01$ $\phi_3(K)=0...00$

- Find the largest set Φ of functions φ such that Adv is small
 Including constant functions
- \blacksquare What if Φ is not restricted?

```
Example: Projections \phi_1(K) = (K \& 0...01) \rightarrow c_1 If K = ??1 then \phi_1(K) = 0...01 If K = ??0 then \phi_1(K) = 0...00
```

Using ϕ_2 and ϕ_3 such that:

$$\phi_2(K) = 0...01 \rightarrow c_2$$

 $\phi_3(K) = 0...00 \rightarrow c_3$

- Find the largest set Φ of functions φ such that Adv is small
 Including constant functions
- What if Φ is not restricted?

Example: Projections
$$\phi_1(K)=(K\ \&\ 0...01)\to c_1$$
 If $K=??1$ then $\phi_1(K)=0...01$ If $K=??0$ then $\phi_1(K)=0...00$

If
$$c_1 = c_2$$
 then $K = ??1$ otherwise $K = ??0$ Last bit recovered!!

Using ϕ_2 and ϕ_3 such that: $\phi_2(K) = 0...01 \rightarrow c_2$ $\phi_3(K) = 0...00 \rightarrow c_3$

- lacksquare Find the largest set Φ of functions ϕ such that Adv is small
 - ► Including constant functions
- What if Φ is not restricted?

Example: Projections
$$\phi_1(K)=(K\ \&\ 0...01) \to c_1$$
 If $K=??1$ then $\phi_1(K)=0...01$ If $K=??0$ then $\phi_1(K)=0...00$

If
$$c_1 = c_2$$
 then $K = ???1$ otherwise $K = ??0$

Last bit recovered!!

Using ϕ_2 and ϕ_3 such that:

$$\phi_2(K) = 0...01 \rightarrow c_2$$

 $\phi_3(K) = 0...00 \rightarrow c_3$

Key bits can be recovered one by one!

KDM set Φ has to be restricted.

KDM set restriction: Claw-freeness

Claw-freeness of a set Φ : $\forall \phi_1 \neq \phi_2$, $\Pr[\phi_1(K) = \phi_2(K)]$ is small.

KDM security:

- Ideal-Cipher KDM-secure under claw-free sets
 - ► [Farshim, K., Vergnaud].
- What about Even-Mansour ciphers?

Even-Mansour ciphers

- Configuration:
 - r rounds
 - ightharpoonup r permutations (= or \neq)
 - Key schedule:
 - r+1 keys (= or \neq)
 - r+1 keys derivated from a master key
- Examples:
 - ► AES, SERPENT, PRESENT ...

- Previous security analysis
 - Indistinguishability
 - Related-key attack
 - Indifferentiability

Securiy analysis: Random permutation model

 P_i uniformly random permutations, KDM functions are oracle-independent ($\phi^{P_i} \notin \text{KDM set } \Phi$)

KDM attack: 1-round Even-Mansour

A claw-free set Φ not always enough...

KDM attack: 1-round Even-Mansour

A claw-free set Φ not always enough...

lacksquare Step 1. Challenge query $\phi(\mathcal{K}_1||\mathcal{K}_2)=\mathcal{K}_1 o c=\mathsf{P}(0)\oplus\mathcal{K}_2$

KDM attack: 1-round Even-Mansour

A claw-free set Φ not always enough...

- Step 1. Challenge query $\phi(K_1||K_2) = K_1 \rightarrow c = P(0) \oplus K_2$
- Step 2. Direct query to P $x = 0 \rightarrow y = P(0)$
- Step 3. \mathcal{A} computes $K_2 = c \oplus y$

Key extraction attack by a KDM adversary.

KDM security analysis: 2-round Even-Mansour

Restrictions on KDM set Φ to have KDM security?

KDM Security Analysis: Game playing

- Adversary goal:
 - Trig bad events: distinguish real world from random world
- Fundamental lemma of game playing: Adv $\leq \sum Pr_i$

Application to 2r-EM same permutations, independent keys.

Game 1: Replace last P, P^{-1} with independent random permutations

Game 2: Replace last P', P'' with forgetful random oracles \$

Game 2 ≈ Random world

Analysis of real world/ \approx random world?

Splitting and forgetting technique

Real world

≈ Random world

Simulator \mathcal{B} for challenge queries

- Bad events between real world and \approx random world:
 - Reduction to adv "splitting game"

- Bad events between real world and ≈ random world:
 - Reduction to adv "splitting game"
 - Pr[sp] (splitting events type 1 and 2)

- Bad events between real world and ≈ random world:
 - Reduction to adv "splitting game"
 - ► Pr[sp] (splitting events type 1 and 2)
 - ► Reduction to adv "forgetful switching game"

- Bad events between real world and \approx random world:
 - Reduction to adv "splitting game"
 - Pr[sp] (splitting events type 1 and 2)
 - Reduction to adv "forgetful switching game"
 - Pr[fg] (forgetful events)

Splitting and forgetting technique

$$\mathsf{Adv}(\mathcal{A}) \leq 18q^2/2^n + q^2(2\cdot \mathsf{Adv}^{cf}(\mathcal{A}_1) + \mathsf{Adv}^{ox}(\mathcal{A}_2))$$
 when $q_p=q$

offset-xor function: $\phi(K) = K_i \oplus K_j \oplus \Delta$

Results: Even-Mansour

Rounds	Permutations	Key schedule	KDM set
1	Р	$K_i =$	$\operatorname{cf} \wedge \operatorname{offset}$
2	$P_i \neq$	$K_i =$	cf
2	$P_i =$	$K_i \neq$	$cf \wedge ox$
2	$P_i =$	$K_i =$	$cf \wedge offset$?
3	$P_i =$	$K_i =$	$\operatorname{cf} \wedge \operatorname{offset}$?
3	$P_i =$	$K_i \neq$	cf

Security proofs [Farshim, K., Vergnaud]
On going work

Previous example

Results: Even-Mansour

Rounds	Permutations	Key schedule	KDM set
1	Р	$K_i =$	$\mathrm{cf} \wedge \mathrm{offset}$
2	$P_i \neq$	$K_i =$	cf
2	$P_i =$	$K_i \neq$	$cf \wedge ox$
2	$P_i =$	$K_i =$	$\operatorname{cf} \wedge \operatorname{offset}$?
3	$P_i =$	$K_i =$	$\operatorname{cf} \wedge \operatorname{offset}$?
3	$P_i =$	$K_i \neq$	cf

Security proofs [Farshim, K., Vergnaud]
On going work

IC KDM security level

Results: Even-Mansour

Rounds	Permutations	Key schedule	KDM set
1	Р	$K_i =$	$cf \wedge offset$
2	$P_i \neq$	$K_i =$	cf
2	$P_i =$	$K_i \neq$	$cf \wedge ox$
2	$P_i =$	$K_i =$	$cf \wedge offset$?
3	$P_i =$	$K_i =$	$cf \wedge offset$?
3	$P_i =$	$K_i \neq$	cf

Security proofs [Farshim, K., Vergnaud]
On going work

Sliding attacks: P = and K =

Results: Key-Alternating Feistel

Rounds	Functions	Keys schedule	KDM set
4	F =	$K_1, 0, 0, K_2$	$cf \wedge offset \wedge offset$
4	$F_i \neq$	$K_i \neq$	$cf \wedge offset$?
5	$F_i =$	$K_i \neq$	$\operatorname{cf} \wedge \operatorname{offset}$?
?	$F_i =$	$K_i \neq$	cf

Security proof based on H-coefficient technique [Farshim, K., Seurin and Vergnaud]

Conjectures.

Open question: How many rounds with the same function needed to have KDM-security for a $\operatorname{cf-set}$?

Part 3. Incremental MACs

Classical MAC algorithm

Incremental Cryptography: MAC

- \blacksquare Generate a tag t of a document D,
- \blacksquare For each edition, the tag t is updated
 - Update in time dependent of modification size
 - ► Update time < MAC time

Document D

Incremental Cryptography: MAC

Document D'

Tag independent from block order!

Incremental MAC

An algorithm is incremental regarding specific *update* operations.

- Insert
- Delete
- Replace (possible using the previous operations)

An update operation must be cheaper than recomputing a tag from scratch.

[BGG] Incremental Cryptography and Application to virus protection, Bellare, Goldreich, Goldwasser (1995):

- Security notions: basic security and tamper-proof security
- Chained Xor-Scheme (basic secure)

Verify

$$\mathcal{L} := \{D^1\}$$

$$MAC$$

$$Update$$

Verify

$$\mathcal{L} := \{D^1, D^2\}$$
 MAC Update (D, t) Verify

$$\mathcal{L} := \{D^1, D^2\}$$
 MAC Update Invalid (0) Valid (1) Verify

$$\mathcal{L} := \{D^1, D^2, D^3\}$$
 op = Delete first block
$$D^3 = \operatorname{op}(D^2)$$
 op, (D^2, t^2) op, (D^2, t^2) Update
$$\mathcal{A}$$
 Update
$$\mathbf{Only \ valid \ couple} \ (D, t)!$$
 Verify

Chained Xor-Scheme [BGG]

- Pair block chaining algorithm
 - $\blacktriangleright \ F: \mathcal{K}_F \times \{0,1\}^{2\ell} \rightarrow \{0,1\}^L$
 - $\blacktriangleright P: \mathcal{K}_P \times \{0,1\}^L \to \{0,1\}^L$
- In: Document D $(n \text{ blocks } D_i)$
- Out: Tag t such that $t = (r, \tau)$

Simple forgery strategy

Cancellation Strategy:

- A asks a MAC on any document D and receives $t = (r, \tau)$
- Goal: Play with D to build D^* such that $\Sigma = \Sigma^*$

[K. and Vergnaud]

Example: 3-block document D

$$D=D_0||D_1||D_2$$
 $t=(r, au)$ such that $r:=r_0||r_1||r_2$ $(R_i=D_i||r_i)$
 (R_0,R_1) (R_1,R_2)
 \downarrow \downarrow \downarrow h_1 \oplus h_2 $=$ Σ

Example: 3-block document D

Build D^* and r^* such that :

$$(R_0, R_1) \qquad (.,.) \qquad (.,.) \qquad (R_1, R_2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$h_1 \qquad \oplus \qquad \dots \qquad \oplus \qquad \dots \qquad \oplus \qquad h_2 \qquad = \quad \Sigma$$

Attack Example: 3-block document D

$$D = D_0 ||D_1||D_2$$
 and $R_i = D_i ||r_i||_{t=0}$
 $t = (r, \tau)$ such that $r := r_0 ||r_1||_{r_2}$

Build D^* and r^* such that:

$$D^* = D_0 ||D_1||D_2||D_1||D_2||D_1||D_2$$
 $au^* = au \text{ and } t^* = (r^*, au^*)$
 $r^* = r_0 ||r_1||r_2||r_1||r_2||r_1||r_2$ $(D^*, t^*) \neq (D, t)$

Attack Example: 3-block document D

$$D = D_0 ||D_1||D_2$$
 and $R_i = D_i ||r_i||$
 $t = (r, \tau)$ such that $r := r_0 ||r_1|| r_2$

Build D^* and r^* such that:

$$\begin{array}{ll} D^* = D_0 ||D_1||D_2||D_1||D_2||D_1||D_2 & \tau^* = \tau \text{ and } t^* = (r^*, \tau^*) \\ r^* = r_0 ||r_1||r_2||r_1||r_2||r_1||r_2 & (D^*, t^*) \neq (D, t) \end{array}$$

More attacks in the thesis.

Modified Xor-Scheme 2

- \blacksquare A fresh value r_n for each update operation
- The random value r_n is necessary!

Basic secure scheme

$$\mathcal{L}:=\{\}$$

Winning conditions:

- Verify(D*, t*) returns 1
- $\blacksquare D^* \notin \mathcal{L}$

$$\mathcal{L}:=\{D^1\}$$

Winning conditions:

- Verify(D*, t*) returns 1
- $\blacksquare D^* \notin \mathcal{L}$

$$\mathcal{L}:=\{D^1,\ D_1D_2\}$$

Winning conditions:

- Verify(D*, t*) returns 1
- $\blacksquare D^* \notin \mathcal{L}$

$$\mathcal{L} := \{D^1, \ D_1D_2\}$$

$$\text{op} = \text{Replace block 1 by } D_1'$$

$$D^3 = \text{op}(?)$$

$$\frac{\text{Winning conditions:}}{A \to (D^*, t^*) \text{ such that:}}$$

$$\text{Verify}(D^*, t^*) \text{ returns 1}$$

$$D^* \notin \mathcal{L}$$

$$\text{Verify}$$

$$\mathcal{L}:=\{D^1,\ D_1D_2,\ D_1'D_2'?\}$$

op = Replace block 1 by D_1 ' $D^3 = op(?)$

Winning conditions:

- Verify (D^*, t^*) returns 1
- $\quad \blacksquare \quad D^* \notin \mathcal{L}$

$$\mathcal{L} := \{ D^1, \ D_1 D_2, \ D_1' D_2'? \}$$
or $D_1' D_2$? or both?

op = Replace block 1 by D_1 ' $D^3 = op(?)$

Winning conditions:

- Verify(D*, t*) returns 1
- $D^* \notin \mathcal{L}$

$$\mathcal{L} := \{D^1, \ D_1D_2, \ D_1'D_2'?\} \\ \text{or } D_1'D_2? \text{ or both?} \}$$

$$\text{op = Replace block 1 by } D_1' \\ D^3 = \text{op}(?)$$

$$\frac{\text{Winning conditions:}}{A \to (D^*, t^*) \text{ such that:}} \\ \text{Verify}(D^*, t^*) \text{ returns 1}$$

$$\text{D}^* \notin \mathcal{L}$$
But how to build \mathcal{L} ?
How can we track each document?
$$\text{Verify}$$

⇒ Introduction of the document identification number id

No game definition...

New Framework for iMAC

New Framework for iMAC

Security game IUF1

- Definition close to Basic security
- List *L*
 - $1 D^1 D^2$
 - $2 D^1 D^2$
 - $3 D^{1}$
- For each id
 - Last version of the document updated
- Winning conditions:
 - $\overline{\mathcal{A}} \to (id, D^*, t^*)$ such that:
 - ▶ Verify (id, D^*, t^*) returns 1,
 - ightharpoonup $(id, D^*) \notin \mathcal{L}$

Security game IUF2

■ Definition close to Tamper-proof security

- \blacksquare List \mathcal{L}
 - $1 \quad D^1
 ightarrow \quad D^2$
 - $2 D^1 \rightarrow D^2$
 - $3 D^{1}$
- For each id
 - ► tag: Computed with D
 - List: Filled with op(D_{id})

MAC

id, (.,.)

Verify

Winning conditions:

- ▶ Verify (id, D^*, t^*) returns 1,
- ightharpoonup (id, D^*) $\notin \mathcal{L}$.

Security game IUFR ("Replay")

FADE mechanism

Security game IUFR ("Replay")

Results: Constructions

From a basic secure Xor-MAC to a IUF1R-MD construction.

- Xor-MAC is basic secure
 - "Xor-MACs: New Methods for Message Authentication Using Finite Pseudorandom Functions", Bellare, Guérin, Rogaway.
- \blacksquare Basic security \Longrightarrow IUF1-SD
- A construction IUF1R-MD
 - ► Generic construct.: SD to MD
 - ► Generic construct.: IUFx to IUFxR

Results: Constructions

From a basic secure Xor-MAC to a IUF1R-MD construction.

- Xor-MAC is basic secure
 - "Xor-MACs: New Methods for Message Authentication Using Finite Pseudorandom Functions", Bellare, Guérin, Rogaway.
- \blacksquare Basic security \Longrightarrow IUF1-SD
- A construction IUF1R-MD
 - ► Generic construct.: SD to MD
 - ► Generic construct.: IUFx to IUFxR

Not IUF2

[Arte, Bellare, K. and Vergnaud]

Results: Constructions

From an IUF2-SD secure Xor-Scheme to IUF2R-MD secure construction.

- Xor-Scheme proved IUF2-SD
- A IUF2R-MD secure construction
 - ► Generic construct.: SD to MD,
 - ► Generic construct.: IUFx to IUFxR.

[Arte, Bellare, K. and Vergnaud].

Results: Constructions

From an IUF2-SD secure Xor-Scheme to IUF2R-MD secure construction.

- Xor-Scheme proved IUF2-SD
- A IUF2R-MD secure construction
 - ► Generic construct.: SD to MD.
 - ► Generic construct.: IUFx to IUFxR.

Strongest security notion

[Arte, Bellare, K. and Vergnaud].

- KDM security:
 - ► Forgetting and splitting (application EM)
 - ► H-coefficient technique (application KAF)

- KDM security:
 - ► Forgetting and splitting (application EM)
 - ► H-coefficient technique (application KAF)
 - ► Minimal KAF configuration KDM secure under a claw-free set
 - ► Application to other schemes?

- KDM security:
 - Forgetting and splitting (application EM)
 - H-coefficient technique (application KAF)
 - ► Minimal KAF configuration KDM secure under a claw-free set
 - ► Application to other schemes?
- Incremental MACs
 - Security notions and Relations among security notions,
 - Generic constructions.
 - An IUF2R-MD secure construction
 - Tag too large,
 - Greedy in randomness.

- KDM security:
 - Forgetting and splitting (application EM)
 - H-coefficient technique (application KAF)
 - Minimal KAF configuration KDM secure under a claw-free set
 - ► Application to other schemes?
- Incremental MACs
 - Security notions and Relations among security notions,
 - Generic constructions,
 - An IUF2R-MD secure construction
 - Tag too large,
 - Greedy in randomness.
 - ► More efficient schemes (time/storage)?
 - Can we build such a scheme?
 - What about implementation?

Thank you for your attention!

Full Disk Encryption and Beyond

Monday, 15 July 2019

Contributions

- FDE: Bridging theory and practice, RSA 2017
 - K., Mouha and Vergnaud.
- Even-Mansour cipher under KDM security, FSE 2018
 - Farshim, K. and Vergnaud
- KDM-Security of Key-Alternating Feistel Ciphers
 - Farshim, K., Seurin and Vergnaud
- Analysis and improvement of an incremental scheme, SAC 2018
 - K. and Vergnaud
- Incremental MACs
 - Arte, Bellare, K. and Vergnaud.

Relations among security notions

$$\mathsf{Adv}(\mathcal{A}) \leq 18q^2/2^n + q^2(2\cdot \mathsf{Adv}^{cf}(\mathcal{A}_1) + \mathsf{Adv}^{ox}(\mathcal{A}_2))$$
 when $q_p=q$

offset-xor function: $\phi(K) = K_i \oplus K_j \oplus \Delta$

Real world

≈ Random world

2-round Even-Mansour

Real world

Forgetful switching game

Real world

Forgetful events

Real world

Splitting events 1

Real world

Splitting events 2

