
Full Disk Encryption and Beyond

Monday, 15 July 2019

Louiza Khati

Outline

2/43

Part 1. From disk storage to security models

Part 2. Key dependent-message security of Even-Mansour ciphers

Part 3. Incremental MACs

3/43

Part 1.

From Disk Storage to Security Models

Disk Storage

4/43

OS Disk Volume

Read/Write data

Disk Storage: Write

4/43

OS Disk Volume

n sectors

s,data

ack

Write data in disk Store data

Disk Storage: Read

4/43

OS Disk Volume

n sectors

s

Data

Read data in disk Give back data

Raw R/W FDE ADE FADE

Disk Storage: Performance

4/43

OS Disk Volume

n sectors

s

Data

Raw R/W FDE ADE FADE

Read/write speed is a priority (optimized)

Competitive aspect for manufacturers

Full Disk Encryption VS File Encryption

5/43

File encryption
I File content is encrypted

• Title, �le size encrypted?

I User action
• Ask to encrypt a speci�c �le

I Space for metadata
• Better security using IV
• Integrity

Full Disk Encryption
I All the data are encrypted

• Sector-based encryption

I Transparent for the user
• Automatic

I No space for metadata
• No IVs
• No Integrity

−−−−−−−−−
DOC

Full Disk Encryption (FDE)

6/43

OS Disk Volume

n sectors

Encryption

data → encrypted data

Read and write: atomic operations
I A sector is encrypted independently from the others

Full Disk Encryption (FDE)

6/43

OS Disk Volume

n sectors

Encryption

data → encrypted data

Length preserving encryption (no metadata)

Deterministic encryption

Raw R/W FDE ADE FADE

MAC

IV

FDE schemes

7/43

FDE

s

K

m

c

Symmetric encryption (speed)
I Blockciphers (AES)
I Sector size > blockcipher input size

FDE schemes

7/43

FDE
m1 m2 m3 m4 m5

α α α α

c1 c2 c3 c4 c5

EK EK EK EK EK

EK′s

s

K

m

c

Symmetric encryption (speed)
I Blockciphers (AES)
I Sector size > blockcipher input size

FDE Modes of operation
I Length preserving modes
I Tweak s used to enhance security

FDE schemes

7/43

FDE
m1 m2 m3 m4 m5

α α α α

c1 c2 c3 c4 c5

EK EK EK EK EK

EK′s

s

K

m

c

Symmetric encryption (speed)
I Blockciphers (AES)
I Sector size > blockcipher input size

FDE Modes of operation
I Length preserving modes
I Tweak s used to enhance security

Security proofs [K., Mouha, Vergnaud]
I Reduction to blockcipher security
I Di�erent security notions

FDE schemes

7/43

FDE
m1 m2 m3 m4 m5

α α α α

c1 c2 c3 c4 c5

EK EK EK EK EK

EK′s

s

K

m

c

Symmetric encryption (speed)
I Blockciphers (AES)
I Sector size > blockcipher input size

FDE Modes of operation
I Length preserving modes
I Tweak s used to enhance security

Security proofs [K., Mouha, Vergnaud]
I Reduction to blockcipher security
I Di�erent security notions

Examples (dm-crypt)
I CBC-ESSIV
I XTS (based on XEX)
I Adiantum (new)

FDE tools: no control of what is stored!

Full Disk Encryption and KDM security

8/43

Atypical scenario can happen
I The key can be stored in the disk
I A (weird) function of the key can be stored

Key-Dependent Message security Model

Security analysis with an adversary that can ask to encrypt the key

Key-Alternating Feistel ciphers [Farshim, K., Seurin, Vergnaud]

Even-Mansour ciphers [Farshim, K., Vergnaud]

Part 2.

Incremental MACs and "FDE"

9/43

Integrity → outside "FDE" Model!
How to get integrity with a minimal impact on performance?

Authenticated Disk Encryption (ADE)
I Ensures sector content integrity
I MAC for each sector (a local tag/sector)
I dm-integrity (Linux Kernel)

Authenticated Disk Encryption

10/43

OS Disk Volume

n sectors

Read a sector in disk Give back sector content

Authenticated
Decryption

Raw R/W FDE ADE FADE

Authenticated Disk Encryption

10/43

OS Disk Volume

n sectors

Write a sector in disk Store sector content

Authenticated
Encryption

Raw R/W FDE ADE FADE

Authenticated Disk Encryption

10/43

OS Disk Volume

n sectors

Con�dentiality
+

Integrity

Raw R/W FDE ADE FADE

Incremental MACs and �FDE�

11/43

Integrity → outside �FDE� Model!
How to get integrity with a minimal impact on performance?

Authenticated Disk Encryption (ADE)
I Ensures sector content integrity,
I MAC for each sector (a local tag/sector)
I dm-integrity (Linux Kernel)

Does not prevent replay-attacks!

Incremental MACs and �FDE�

11/43

Integrity → outside �FDE� Model!
How to get integrity with a minimal impact on performance?

Authenticated Disk Encryption (ADE)
I Ensures sector content integrity,
I MAC for each sector (a local tag/sector)
I dm-integrity (Linux Kernel)

Does not prevent replay-attacks!

Fully Authenticated Disk Encryption (FADE)
I Prevent replay-attacks
I Ensures local tags integrity
I MAC over all the local tags (global tag/disk)

Fully Authenticated Disk Encryption

12/43

OS Disk Volume

n sectors

Raw R/W FDE ADE FADE

Secure Memory

Global tag = MAC over local tags

Global tag in Secure memory (small)

MAC is too expensive

Fully Authenticated Disk Encryption

12/43

OS Disk Volume

n sectors

Raw R/W FDE ADE FADE

Secure Memory

Global tag = MAC over local tags

Global tag in Secure memory (small)

MAC is too expensive Incremental MACs

Fully Authenticated Disk Encryption

12/43

OS Disk Volume

n sectors

Raw R/W FDE ADE FADE

Secure Memory

Global tag = MAC over local tags

Global tag in Secure memory (small)

MAC is too expensive Incremental MACs

Con�dentiality
+

Integrity
+

Anti-replay

Part 3.

13/43

Part 2.

Key-Dependent Message (KDM) Security

Even-Mansour Ciphers

Security Analysis

14/43

Robustness against an arbitrary adversary?
EK

Security Analysis

14/43

Robustness against an arbitrary adversary?

Robustness against speci�c attacks?
I Speci�c to a blockcipher and not enough

EK

Security Analysis

14/43

Robustness against an arbitrary adversary?

Robustness against speci�c attacks?
I Speci�c to a blockcipher and not enough

EK

Security Analysis

14/43

Robustness against an arbitrary adversary?

Robustness against speci�c attacks?
I Speci�c to a blockcipher and not enough

Robustness against generic attacks?
I Feasible: Internal primitives idealized

EK

Security Analysis

14/43

Robustness against an arbitrary adversary?

Robustness against speci�c attacks?
I Speci�c to a blockcipher and not enough

Robustness against generic attacks?
I Feasible: Internal primitives idealized

Security Proof
I Modeled by a game: adversary/challenger
I Adversary model (power)

EK

Indistinguishability game

15/43

E−K (c)

A

(b=0) Real world

EK

m EK (m)

0/1

E−K (c)

A

(b=1) Random world

m

P$

P$(m)

0/1

Chosen Plaintext Attack (CPA) adversary

Adv = | Pr[A → 1|Real] - Pr[A → 1|Random] |

Indistinguishability game

15/43

E−K (c)

A

(b=0) Real world

E -1K

E -1K (c) c

0/1

E−K (c)

A

(b=1) Random world

P-1$

P-1$ (c) c

0/1

Chosen Ciphertext Attack (CCA) adversary

Adv = | Pr[A → 1|Real] - Pr[A → 1|Random] |

KDM security: Indistinguishability game

15/43

E−K (c)

A

(b=0) Real world

K ,EK

function φ EK (φ(K))

0/1

E−K (c)

A

(b=1) Random world

function φ

K ,P$

P$(φ(K))

0/1

KDM-CPA adversary

Adv = | Pr[A → 1|Real] - Pr[A → 1|Random] |

KDM security: Indistinguishability game

15/43

E−K (c)

A

(b=0) Real world

K ,E -1K

E -1K (c) c

0/1

E−K (c)

A

(b=1) Random world

K ,P-1$

P-1$ (c) c

0/1

KDM-CCA adversary ("Standard" decryption)

Adv = | Pr[A → 1|Real] - Pr[A → 1|Random] |

KDM security: Indistinguishability game

15/43

E−K (c)

A

(b=0) Real world

K ,E -1K

E -1K (c) c

0/1

E−K (c)

A

(b=1) Random world

K ,P-1$

P-1$ (c) c

0/1

Forbidden queries: Repeat queries, Enc/Dec oracle's answers

Key Dependent Message Security analysis

16/43

Find the largest set Φ of functions φ such that Adv is small
I Including constant functions

What if Φ is not restricted?

Key Dependent Message Security analysis

16/43

Find the largest set Φ of functions φ such that Adv is small
I Including constant functions

What if Φ is not restricted?

Example: Projections
φ1(K) = (K & 0...01)
If K =?? 1 then φ1(K) = 0...01
If K =?? 0 then φ1(K) = 0...00

Key Dependent Message Security analysis

16/43

Find the largest set Φ of functions φ such that Adv is small
I Including constant functions

What if Φ is not restricted?

Example: Projections
φ1(K) = (K & 0...01)
If K =?? 1 then φ1(K) = 0...01
If K =?? 0 then φ1(K) = 0...00

Using φ2 and φ3 such that:
φ2(K) = 0...01
φ3(K) = 0...00

Key Dependent Message Security analysis

16/43

Find the largest set Φ of functions φ such that Adv is small
I Including constant functions

What if Φ is not restricted?

Example: Projections
φ1(K) = (K & 0...01) → c1
If K =??1 then φ1(K) = 0...01
If K =??0 then φ1(K) = 0...00

Using φ2 and φ3 such that:
φ2(K) = 0...01 → c2
φ3(K) = 0...00 → c3

Key Dependent Message Security analysis

16/43

Find the largest set Φ of functions φ such that Adv is small
I Including constant functions

What if Φ is not restricted?

Example: Projections
φ1(K) = (K & 0...01) → c1
If K =??1 then φ1(K) = 0...01
If K =??0 then φ1(K) = 0...00

Using φ2 and φ3 such that:
φ2(K) = 0...01 → c2
φ3(K) = 0...00 → c3

If c1 = c2 then
K =??1 otherwise K =??0

Last bit recovered!!

Key Dependent Message Security analysis

16/43

Find the largest set Φ of functions φ such that Adv is small
I Including constant functions

What if Φ is not restricted?

Example: Projections
φ1(K) = (K & 0...01) → c1
If K =??1 then φ1(K) = 0...01
If K =??0 then φ1(K) = 0...00

Using φ2 and φ3 such that:
φ2(K) = 0...01 → c2
φ3(K) = 0...00 → c3

If c1 = c2 then
K =??1 otherwise K =??0

Last bit recovered!!

Key bits can be recovered one by one!

KDM set Φ has to be restricted.

KDM set restriction: Claw-freeness

17/43

Claw-freeness of a set Φ: ∀ φ1 6= φ2, Pr[φ1(K) = φ2(K)] is small.

KDM security:

Ideal-Cipher KDM-secure under claw-free sets
I [Farshim, K., Vergnaud].

What about Even-Mansour ciphers?

Even-Mansour ciphers

18/43

Previous security analysis
I Indistinguishability
I Related-key attack
I Indi�erentiability

Con�guration:
I r rounds
I r permutations (= or 6=)
I Key schedule:

• r + 1 keys (= or 6=)
• r + 1 keys derivated from a master key

Examples:
I AES, SERPENT, PRESENT . . .

m

k1

P1

k2

P2

k3 kr

Pr

kr+1

c

Securiy analysis: Random permutation model

19/43

A A

(b=0) Real world (b=1) Random world

K, m

K1

P1

K2 Kr

Pr

Kr+1

cP1 Pr
. . . K , P$P1 Pr

.

Pi uniformly random permutations,
KDM functions are oracle-independent (φPi /∈ KDM set Φ)

KDM attack: 1-round Even-Mansour

20/43

A claw-free set Φ not always enough...

φ(K)

K1

P

K2

c x yP

KDM attack: 1-round Even-Mansour

20/43

A claw-free set Φ not always enough...

K1

K1

P

K2

P(0)⊕ K2 x yP

Step 1. Challenge query φ(K1||K2) = K1 → c = P(0)⊕ K2

KDM attack: 1-round Even-Mansour

20/43

A claw-free set Φ not always enough...

K1

K1

P

K2

P(0)⊕ K2 0 P(0)P

Step 1. Challenge query φ(K1||K2) = K1 → c = P(0)⊕ K2

Step 2. Direct query to P x = 0 → y = P(0)

Step 3. A computes K2 = c ⊕ y

Key extraction attack by a KDM adversary.

KDM security analysis: 2-round Even-Mansour

21/43

P± = {P,P-1}

Restrictions on KDM set Φ to have KDM security?

Real world

Random world

φ(K)φ

K1

P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

P$

K3

c

P± c P-1$ m

KDM Security Analysis: Game playing

22/43

Pri= Pr[A sets bad in Gi]

Adversary goal:
I Trig bad events: distinguish real world from random world

Fundamental lemma of game playing: Adv ≤∑
Pri

A A

(G0) Real world (Gn) Random world

Pr1 Pri Pri+1 Prn

KDM security analysis: Splitting and forgetting technique

23/43

P± = {P,P-1}

Application to 2r-EM same permutations, independent keys.

Real world

Random world

φ(K)φ

K1

P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

P$

K3

c

P± c P-1$ m

KDM security analysis: Splitting and forgetting technique

23/43

P± = {P,P-1}

�Oracle split�

Game 1: Replace last P, P-1 with independent random permutations

Game 1

Random world

φ(K)φ

K1

P

K2

P'

K3

cP±

c

K3

P-1

K2

P�

K1

m

A

φ(K)
φ

P$

K3

c

P± c P-1$ m

KDM security analysis: Splitting and forgetting technique

23/43

P± = {P,P-1}

�Oracle forget�

Game 2: Replace last P', P� with forgetful random oracles $

Game 2

F$

Random world

φ(K)φ

K1

P

K2

$

K3

cP±

c

K3

P-1

K2

$

K1

m

A

φ(K)
φ

P$

K3

c

P± c P-1$ m

KDM security analysis: Splitting and forgetting technique

23/43

P± = {P,P-1}

PRP/PRF switching lemma

Game 2

F$

Random world

φ(K)φ

K1

P

K2

$

K3

cP±

c

K3

P-1

K2

$

K1

m

A

φ(K)
φ

P$

K3

c

P± c P-1$ m

KDM security analysis: Splitting and forgetting technique

23/43

P± = {P,P-1}

Analysis of real world/≈ random world?

Game 2 ≈ Random world

F$

Random world

φ(K)φ

K1

P

K2

$

K3

cP±

c

K3

P-1

K2

$

K1

m

A

φ(K)
φ

P$

K3

c

P± c P-1$ m

Splitting and forgetting technique

24/43

Real world

≈ Random world

φ(K)

K1

φ
P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

K1

P

K2

$

K3

c

P±
c

K3

P-1

K2

$

K1

m

Simulator B for challenge queries

B

B

K

K

K

K

A

A

$

P±

P±

P±

KDM security analysis: Splitting and forgetting technique

25/43

Bad events between real world and ≈ random world:
I Reduction to adv �splitting game�

A A

Real world ≈ Random world

Pr1 Pri Pri+1 Prn

A'

P′±

P±A'

P±

P±

KDM security analysis: Splitting and forgetting technique

25/43

Bad events between real world and ≈ random world:
I Reduction to adv �splitting game�
I Pr[sp] (splitting events type 1 and 2)

A A

Real world ≈ Random world

Pr1 Pri Pri+1 Prn

KDM security analysis: Splitting and forgetting technique

25/43

Bad events between real world and ≈ random world:
I Reduction to adv �splitting game�
I Pr[sp] (splitting events type 1 and 2)
I Reduction to adv �forgetful switching game�

A A

Real world ≈ Random world

Pr1 Pri Pri+1 Prn

A'

$

A'

P±

KDM security analysis: Splitting and forgetting technique

25/43

Bad events between real world and ≈ random world:
I Reduction to adv �splitting game�
I Pr[sp] (splitting events type 1 and 2)
I Reduction to adv �forgetful switching game�
I Pr[fg] (forgetful events)

A A

Real world ≈ Random world

Pr1 Pri Pri+1 Prn

Splitting and forgetting technique

26/43

Real world

≈ Random world

φ(K)

K1

φ
P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

K1

P

K2

$

K3

c

P±
c

K3

P-1

K2

$

K1

m

Adv(A) ≤ 18q2/2n + q2(2 · Advcf (A1) + Advox(A2))
when qp = q

o�set-xor function: φ(K) = Ki ⊕ Kj ⊕∆

Results: Even-Mansour

27/43

Rounds Permutations Key schedule KDM set
1 P Ki = cf ∧ o�set

2 Pi 6= Ki = cf

2 Pi = Ki 6= cf ∧ ox

2 Pi = Ki = cf ∧ o�set?
3 Pi = Ki = cf ∧ o�set?
3 Pi = Ki 6= cf

Security proofs [Farshim, K., Vergnaud]
On going work

x

K1

P1

K2

P2

Ki

Pi

Kr

Pr

y

Kr+1

Previous example

Results: Even-Mansour

27/43

Rounds Permutations Key schedule KDM set
1 P Ki = cf ∧ o�set

2 Pi 6= Ki = cf

2 Pi = Ki 6= cf ∧ ox

2 Pi = Ki = cf ∧ o�set?
3 Pi = Ki = cf ∧ o�set?
3 Pi = Ki 6= cf

Security proofs [Farshim, K., Vergnaud]
On going work

x

K1

P1

K2

P2

Ki

Pi

Kr

Pr

y

Kr+1

IC KDM security level

Results: Even-Mansour

27/43

Rounds Permutations Key schedule KDM set
1 P Ki = cf ∧ o�set

2 Pi 6= Ki = cf

2 Pi = Ki 6= cf ∧ ox

2 Pi = Ki = cf ∧ o�set?
3 Pi = Ki = cf ∧ o�set?
3 Pi = Ki 6= cf

Security proofs [Farshim, K., Vergnaud]
On going work

x

K1

P1

K2

P2

Ki

Pi

Kr

Pr

y

Kr+1

Sliding attacks: P = and K =

Results: Key-Alternating Feistel

28/43

Rounds Functions Keys schedule KDM set
4 F = K1, 0, 0,K2 cf ∧ o�set ∧ ox

4 Fi 6= Ki 6= cf ∧ o�set?
5 Fi = Ki 6= cf ∧ o�set?
? Fi = Ki 6= cf

Security proof based on H-coe�cient technique
[Farshim, K., Seurin and Vergnaud]

Conjectures.

Open question: How many rounds with the same
function needed to have KDM-security for a cf-set?

L

F1

K1
R

F2

K2

Fi

Ki

Fr

Kr

S T

29/43

Part 3.

Incremental MACs

Classical MAC algorithm

30/43

Modi�cation

−−−−
DOC

t

MAC(.)

− −− −
DOC

t'

MAC(.)

Modi�cation

Document D Document D'

Update expensive!
Doc length dependent

Incremental Cryptography: MAC

Generate a tag t of a document D,

For each edition, the tag t is updated
I Update in time dependent of modi�cation size
I Update time < MAC time

31/43

Incremental MACs: the idea

32/43

Document D

−−−−
DOC

Incremental MACs: the idea

32/43

Document D

−−−−
DOC

d1 d2 d3 d4

Incremental MACs: the idea

32/43

Document D

−−−−
DOC

d1 d2 d3 d4

h1 h2 h3 h4

Incremental MACs: the idea

32/43

Document D

−−−−
DOC

d1 d2 d3 d4

h1 h2 h3 h4=t

Incremental Cryptography: MAC

33/43

Document D'

− −− −
DOC

Incremental Cryptography: MAC

33/43

Document D'

− −− −
DOC

d1 d2' d3 d4

Incremental Cryptography: MAC

33/43

Document D'

− −− −
DOC

d1 d2' d3 d4

h2' t

Incremental Cryptography: MAC

33/43

Document D'

− −− −
DOC

d1 d2' d3 d4

h2' t

d2

h2

Incremental Cryptography: MAC

33/43

Document D'

− −− −
DOC

d1 d2' d3 d4

h2' t

d2

h2=t'

Tag independent from block order!

Incremental MAC

34/43

An algorithm is incremental regarding speci�c update operations.

Insert

Delete

Replace (possible using the previous operations)

An update operation must be cheaper than recomputing a tag from
scratch.

[BGG] Incremental Cryptography and Application to virus protection,
Bellare, Goldreich, Goldwasser (1995):

Security notions: basic security and tamper-proof security

Chained Xor-Scheme (basic secure)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {}

A

MAC

Update

Verify

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {}

A

MAC

Update

Verify

D1

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1}

A

MAC

Update

Verify

t1

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1,D2}

A

MAC

Update

Verify

D2

t2

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1,D2}

A

MAC

Update

Verify

(D, t)

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1,D2}

A

MAC

Update

Verify

Invalid (0)
Valid (1)

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1,D2}

Valid couple (D, t)!

A

MAC

Update

Verify

op, (D2, t2)

op = Delete �rst block

Only valid couples are updatable

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1,D2,D3}

Valid couple (D, t)!

A

MAC

Update

Verify

op, (D2, t2)

t3

op = Delete �rst block
D3 = op(D2)

Only valid couples are updatable

Notations: D i (i-th document) and Dj (j-th document block)

Security Notion 1: Basic Security Model [BGG]

35/43

L := {D1,D2,D3, . . . ,Dq}

Valid couple (D, t)!

A

MAC

Update

Verify

t3
Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1,

D∗ /∈ L.

Only valid couples are updatable

Notations: D i (i-th document) and Dj (j-th document block)

Chained Xor-Scheme [BGG]

36/43

Fk1 Fk1 Fk1 Fk1 Fk1

h1 h2 h3 h4 hn
Pk2

τ

D0

r0 ||

R0

D1

r1 ||

R1

D2

r2 ||

R2

D3

r3 ||

R3

Dn−2

rn−2 ||

Rn−2

Dn−1

rn−1 ||

Rn−1

. . .

. . .

Σ

In: Document D (n blocks Di)

Out: Tag t such that t = (r , τ)

Pair block chaining algorithm

I F : KF × {0, 1}2` → {0, 1}L
I P : KP × {0, 1}L → {0, 1}L

r = r0||r1|| . . . ||rn−1 and |ri | = `− b

Simple forgery strategy

37/43

Fk1 Fk1 Fk1 Fk1 Fk1

h1 h2 h3 h4 hn
Pk2

τ

D0

r0 ||

R0

D1

r1 ||

R1

D2

r2 ||

R2

D3

r3 ||

R3

Dn−2

rn−2 ||

Rn−2

Dn−1

rn−1 ||

Rn−1

. . .

. . .

Σ

Cancellation Strategy:

A asks a MAC on any document D and receives t = (r, τ)

Goal: Play with D to build D∗ such that Σ = Σ∗

[K. and Vergnaud]

Example: 3-block document D

38/43

D = D0||D1||D2

t = (r , τ) such that r := r0||r1||r2 (Ri = Di ||ri)

(R0,R1) (R1,R2)
↓ ↓
h1 ⊕ h2 = Σ

Example: 3-block document D

38/43

D = D0||D1||D2

t = (r , τ) such that r := r0||r1||r2 (Ri = Di ||ri)

(R0,R1) (R1,R2)
↓ ↓
h1 ⊕ h2 = Σ

Build D∗ and r∗ such that :

(R0,R1) (., .) (., .) (R1,R2)
↓ ↓ ↓ ↓
h1 ⊕ . . . ⊕ . . . ⊕ h2 = Σ︸ ︷︷ ︸

= 0

Attack Example: 3-block document D

39/43

D = D0||D1||D2 and Ri = Di ||ri
t = (r , τ) such that r := r0||r1||r2

Build D∗ and r∗ such that:

(R0,R1) (R1,R2) (R2,R1) (R1,R2) (R2,R1) (R1,R2)
↓ ↓ ↓ ↓ ↓ ↓
h1 ��h2 ��h2' ��h2 ��h2' h2 = Σ∗︸ ︷︷ ︸

= 0

D∗ = D0||D1||D2||D1||D2||D1||D2

r∗ = r0||r1||r2||r1||r2||r1||r2
τ∗ = τ and t∗ = (r∗, τ∗)
(D∗, t∗) 6= (D, t)

Attack Example: 3-block document D

39/43

D = D0||D1||D2 and Ri = Di ||ri
t = (r , τ) such that r := r0||r1||r2

Build D∗ and r∗ such that:

(R0,R1) (R1,R2) (R2,R1) (R1,R2) (R2,R1) (R1,R2)
↓ ↓ ↓ ↓ ↓ ↓
h1 ��h2 ��h2' ��h2 ��h2' h2 = Σ∗︸ ︷︷ ︸

= 0

D∗ = D0||D1||D2||D1||D2||D1||D2

r∗ = r0||r1||r2||r1||r2||r1||r2
τ∗ = τ and t∗ = (r∗, τ∗)
(D∗, t∗) 6= (D, t)

More attacks in the thesis.

Modi�ed Xor-Scheme 2

40/43

Fk1
Fk1

Fk1
Fk1

Fk2

τ

nD0 D1 D2 D3 Dn−1

h1 h2 h3 h4 hn

r0 ||

R0

r1 ||

R1

r2 ||

R2

r3 ||

R3

rn−1 ||

Rn−1

rn ||

Rn

. . .

. . .

A fresh value rn for each update operation

The random value rn is necessary!
Basic secure scheme

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {}

Any couple (D, t)!

A

MAC

Update

Verify

Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {}

Any couple (D, t)!

A

MAC

Update

Verify

D1

Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {D1}

Any couple (D, t)!

A

MAC

Update

Verify

t1

Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {D1, D1D2}

Any couple (D, t)!

A

MAC

Update

Verify

D1D2

t2

Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {D1, D1D2}

Any couple (D, t)!

A

MAC

Update

Verify

op, (D1D
′
2
, t2)

Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

op = Replace block 1 by D1'
D3 = op(?)

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {D1, D1D2, D
′
1
D ′
2
?}

Any couple (D, t)!

A

MAC

Update

Verify

op, (D1D
′
2
, t2)

t3Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

op = Replace block 1 by D1'
D3 = op(?)

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {D1, D1D2, D
′
1
D ′
2
?}

or D ′
1
D2? or both?}

Any couple (D, t)!

A

MAC

Update

Verify

op, (D1D
′
2
, t2)

t3Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

op = Replace block 1 by D1'
D3 = op(?)

Security Notion 2: Tamper-proof Security Model [BGG]

41/43

L := {D1, D1D2, D
′
1
D ′
2
?}

or D ′
1
D2? or both?}

Any couple (D, t)!

A

MAC

Update

Verify

op, (D1D
′
2
, t2)

t3Winning conditions:
A → (D∗, t∗) such that:

Verify(D∗, t∗) returns 1

D∗ /∈ L

But how to build L?
How can we track each document?
No game de�nition...

=⇒ Introduction of the document identi�cation number id

op = Replace block 1 by D1'
D3 = op(?)

New Framework for iMAC

42/43

id , .

id , (.,.)

id , (.,.)

A

MAC

Update

Verify

Document identi�cation number id
I Single-document (SD) id = ε,
I Multi-document (MD).

One MAC call/id

New Framework for iMAC

42/43

id , .

id , (.,.)

id , (.,.)

A

MAC

Update

Verify

Document identi�cation number id
I Single-document (SD) id = ε,
I Multi-document (MD).

One MAC call/id

Incremental UnForgeability (IUF)
I Type 1 (IUF1) ≈ Basic Security
I Type 2 (IUF2) ≈ Tamper-proof Security

Security game IUF1

43/43

id , .

id , op, (���D, t)

id , (.,.)

A

MAC

Update

Verify

De�nition close to Basic security

List L
1 D1 D2

2 D1 D2

3 D1

For each id
I Last version of the document

updated

Winning conditions:
A → (id ,D∗, t∗) such that:
I Verify (id ,D∗, t∗) returns 1,
I (id ,D∗) /∈ L.

Security game IUF2

44/43

id , .

id , op, (D, t)

id , (.,.)

A

MAC

Update

Verify

De�nition close to Tamper-proof security

List L
1 D1 → D2

2 D1 → D2

3 D1 →

For each id
I tag: Computed with D
I List: Filled with op(Did)

Winning conditions:
A → (id ,D∗, t∗) such that:
I Verify (id ,D∗, t∗) returns 1,
I (id ,D∗) /∈ L.

Security game IUFR ("Replay")

45/43

id , .

id , op, (.,.)

id , (.,.)

A

MAC

Update

Verify

IUF1R or IUF2R

List L (last doc/ id)

1 D7

2 D4

3 D1

Winning conditions:
A → (id ,D∗, t∗) such that:
I Verify (id ,D∗, t∗) returns 1,
I (id ,D∗) /∈ L.

FADE mechanism

Security game IUFR ("Replay")

45/43

id , .

id , op, (.,.)

id , (.,.)

A

MAC

Update

Verify

st

IUF1R or IUF2R

List L (last doc/ id)

1 D7

2 D4

3 D1

Winning conditions:
A → (id ,D∗, t∗) such that:
I Verify (id ,D∗, t∗) returns 1,
I (id ,D∗) /∈ L.

Stateful Schemes only
I (Secure memory)

FADE mechanism

Results: Constructions

46/43

FK FK FK FK FK

τ

0||v 1||1||D1 1||2||D2 1||3||D3 1||nb||Dnb

h0 h1 h2 h3 hnb

. . .

From a basic secure Xor-MAC to a IUF1R-MD construction.

Xor-MAC is basic secure
I "Xor-MACs: New Methods for Message Authentication Using Finite

Pseudorandom Functions", Bellare, Guérin, Rogaway.

Basic security =⇒ IUF1-SD

A construction IUF1R-MD
I Generic construct.: SD to MD
I Generic construct.: IUFx to IUFxR

[Arte, Bellare, K. and Vergnaud]

Results: Constructions

46/43

FK FK FK FK FK

τ

0||v 1||1||D1 1||2||D2 1||3||D3 1||nb||Dnb

h0 h1 h2 h3 hnb

. . .

From a basic secure Xor-MAC to a IUF1R-MD construction.

Xor-MAC is basic secure
I "Xor-MACs: New Methods for Message Authentication Using Finite

Pseudorandom Functions", Bellare, Guérin, Rogaway.

Basic security =⇒ IUF1-SD

A construction IUF1R-MD
I Generic construct.: SD to MD
I Generic construct.: IUFx to IUFxR

[Arte, Bellare, K. and Vergnaud]

Not IUF2

Results: Constructions

47/43

Fk1
Fk1

Fk1
Fk1

Fk2

τ

nD0 D1 D2 D3 Dn−1

h1 h2 h3 h4 hn

r0 ||

R0

r1 ||

R1

r2 ||

R2

r3 ||

R3

rn−1 ||

Rn−1

rn ||

Rn

. . .

. . .

From an IUF2-SD secure Xor-Scheme to IUF2R-MD secure construction.

Xor-Scheme proved IUF2-SD

A IUF2R-MD secure construction

I Generic construct.: SD to MD,
I Generic construct.: IUFx to IUFxR.

[Arte, Bellare, K. and Vergnaud].

Results: Constructions

47/43

Fk1
Fk1

Fk1
Fk1

Fk2

τ

nD0 D1 D2 D3 Dn−1

h1 h2 h3 h4 hn

r0 ||

R0

r1 ||

R1

r2 ||

R2

r3 ||

R3

rn−1 ||

Rn−1

rn ||

Rn

. . .

. . .

From an IUF2-SD secure Xor-Scheme to IUF2R-MD secure construction.

Xor-Scheme proved IUF2-SD

A IUF2R-MD secure construction

I Generic construct.: SD to MD,
I Generic construct.: IUFx to IUFxR.

[Arte, Bellare, K. and Vergnaud].

Strongest security notion

Conclusion

KDM security:
I Forgetting and splitting (application EM)
I H-coe�cient technique (application KAF)

48/43

Conclusion

KDM security:
I Forgetting and splitting (application EM)
I H-coe�cient technique (application KAF)
I Minimal KAF con�guration KDM secure under a claw-free set
I Application to other schemes?

48/43

Conclusion

KDM security:
I Forgetting and splitting (application EM)
I H-coe�cient technique (application KAF)
I Minimal KAF con�guration KDM secure under a claw-free set
I Application to other schemes?

Incremental MACs
I Security notions and Relations among security notions,
I Generic constructions,
I An IUF2R-MD secure construction

• Tag too large,
• Greedy in randomness.

48/43

Conclusion

KDM security:
I Forgetting and splitting (application EM)
I H-coe�cient technique (application KAF)
I Minimal KAF con�guration KDM secure under a claw-free set
I Application to other schemes?

Incremental MACs
I Security notions and Relations among security notions,
I Generic constructions,
I An IUF2R-MD secure construction

• Tag too large,
• Greedy in randomness.

I More e�cient schemes (time/storage)?
• Can we build such a scheme ?

I What about implementation?

48/43

Thank you for your attention!

49/43

Full Disk Encryption and Beyond

Monday, 15 July 2019

Louiza Khati

Contributions

FDE: Bridging theory and practice, RSA 2017
I K., Mouha and Vergnaud.

Even-Mansour cipher under KDM security, FSE 2018
I Farshim, K. and Vergnaud

KDM-Security of Key-Alternating Feistel Ciphers
I Farshim, K., Seurin and Vergnaud

Analysis and improvement of an incremental scheme, SAC 2018
I K. and Vergnaud

Incremental MACs
I Arte, Bellare, K. and Vergnaud.

49/43

Relations among security notions

49/43

IUF-BS

IUF1-SD IUF1-MD

IUF2-SD IUF2-MD

IUF1R-SD IUF1R-MD

IUF2R-SD IUF2R-MD

Splitting and forgetting technique

49/43

Real world

≈ Random world

φ(K)

K1

φ
P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

K1

P

K2

$

K3

c

P±
c

K3

P-1

K2

$

K1

m

Adv(A) ≤ 18q2/2n + q2(2 · Advcf (A1) + Advox(A2))
when qp = q

o�set-xor function: φ(K) = Ki ⊕ Kj ⊕∆

Splitting and forgetting technique

49/43

Real world

≈ Random world

φ(K)

K1

φ
P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

K1

P

K2

$

K3

c

P±
c

K3

P-1

K2

$

K1

m

2-round Even-Mansour

B

B

K

K

A

A

$

P±

P±

P±

Splitting and forgetting technique

48/43

Real world

≈ Random world

φ

K1

P

K2

P

K3

cP±

c

K3

P−

K2

P−

K3

m

A

φ

K1

P

K2

$

K3

c

P±
c

K3

P−

K2

$

K1

m

Splitting game

B

B

P′±

P±

P±

P±

Splitting and forgetting technique

47/43

Real world

≈ Random world

φ

K1

P

K2

P

K3

cP±

c

K3

P−

K2

P−

K3

m

A

φ

K1

P

K2

$

K3

c

P±
c

K3

P−

K2

$

K1

m

Forgetful switching game

B

B

$

P±

Splitting and forgetting technique

46/43

Real world

≈ Random world

φ

K1

P

K2

P
1

K3

cP±

c

K3

P−

K2

P−2

K1

m

A

φ

K1

P

K2

$
1

K3

c

P±
c

K3

P−

K2

$
2

K1

m

Forgetful events

B

B

K

K

A

A

$

P±

P±

P±
fg

fg

Splitting and forgetting technique

45/43

Real world

≈ Random world

φ

K1

P

K2

P
1

K3

cP±1 2

c

K3

P−

K2

P−2

K1

m

A

φ

K1

P

K2

$
1

K3

c

P±1 2 c

K3

P−

K2

$
2

K1

m

Splitting events 1

B

B

K

K

A

A

$

P±

P±

P±
sp1

sp1

sp1

sp1

Splitting and forgetting technique

44/43

Real world

≈ Random world

φ

K1

P

K2

P
11

K3

cP±

c

K3

P−

K2

P−22

K1

m

A

φ

K1

P

K2

$
11

K3

c

P±
c

K3

P−

K2

$
22

K1

m

Splitting events 2

B

B

K

K

A

A

$

P±

P±

P±
sp2

sp2

sp2
sp2

Splitting and forgetting technique

43/43

Real world

≈ Random world

φ(K)

K1

φ
P

K2

P

K3

cP±

c

K3

P-1

K2

P-1

K1

m

A

φ(K)
φ

K1

P

K2

$

K3

c

P±
c

K3

P-1

K2

$

K1

m

B

B

K

K

A

A

$

P±

P±

P±

Adv(A) ≤ 18q2/2n + q2(2 · Advcf (A1) + Adv
ox(A2))

when qp = q

o�set-xor function: φ(K) = Ki ⊕ Kj ⊕∆

	Full Disk Encryption
	KDM Security
	Incremental MACs
	Security Notions
	Xor-Scheme and Attacks
	Conclusion

