RSA Conference2017

San Francisco | February 13-17 | Moscone Center

SESSION ID: CRYP-R03

Symmetric Key Constructions Full Disk Encryption: Bridging Theory and Practice

Louiza Khati, Nicky Mouha and Damien Vergnaud ENS and Oppida, France

Disk storage principle/Overview

Logical Block Address (LBA)

Physical Block Address (PBA)

Full Disk Encryption (FDE)

FDE deterministic so ...

What level of security can we obtain in this context ?

Databases SSD

Security models Security proofs

Outline

- Modes of operation used in FDE
- FDE security notions
- New security models :
 - The Unique First Block (UFB) model
 - The diversifier model
- A diversifier in SSD technology

Sector size = multiple of block size

#RSAC

6

CBC-essiv mode

7

IGE-essiv mode

RS/Conference2017

XTS mode

Wide Tweakable Block Cipher (WTBC)

ENS OPPIDA

10

RS∧^COnference2017

FDE security notions : IND-CPA

?

11

?

#RSAC

RS∧^COnference2017

FDE security notions : IND-CPA-repetition

12

RSAConference2017

i = 4

p₄

c′₄

encryption

FDE security notions : IND-CPA-block

Adversary power : Classical model

Classical Attack model

ıv →	CBC S	CBC E _{K'} (s)	IGE E _{K'} (s)	XTS s	WTBC s
IND-CPA-block	X	X	X	✓	X
IND-CPA-repetition	X	X	X	X	✓
IND-CPA	X	X	X	X	X
IND-CCA-block	X	X	X	✓	X
IND-CCA-repetition	X	X	X	X	✓
IND-CCA	X	X	X	X	X

Adversary power : UFB model

UFB Model applications

- Database applications
 - Encryption at application level too slow,
 - At least 8 bytes of padding added = wastage
- Solution :
 - Use 8-bytes timestamp in the first block (\rightarrow UFB)
 - Encryption at sector level (CBC-essiv)

Rogaway's Encode-then-Encipher [5]

UFB attack model

ıv →	CBC S	CBC E _{K'} (s)	IGE E _{K'} (s)	XTS s	WTBC s
IND-CPA-block	X	X	X	\checkmark	X
IND-CPA-repetition	X	✓	✓	X	\checkmark
IND-CPA	X	✓	✓	X	✓
IND-CCA-block	X	X	X	\checkmark	X
IND-CCA-repetition	X	X	X	X	\checkmark
IND-CCA	X	X	X	X	✓

Security proofs in the paper

- No additional data (no storage)
 - Not an IV, Not a Nonce
- A non stored value j in the system different for each encryption
- Now s is replaced by i = s | j
- Even same (s, p) \rightarrow different j \rightarrow different c

Adversary power : Diversifier model

Diversifier model

ıv →	CBC S	CBC E _{K'} (s)	IGE E _{K'} (s)	XTS s	WTBC s
IND-CPA-block	X	✓	✓	\checkmark	✓
IND-CPA-repetition	X	\checkmark	\checkmark	\checkmark	\checkmark
IND-CPA	X	\checkmark	\checkmark	✓	\checkmark
IND-CCA-block	X	X	X	\checkmark	X
IND-CCA-repetition	X	X	X	X	\checkmark
IND-CCA	X	X	X	X	\checkmark

SSD technology

Flash Memory organisation

SSD constraints

- PBA can be overwritten only a limited number of times
 →Wear leveling : distribution of writes (extend SSD lifetime)
- Rewriting individual sectors is not possible ightarrow invalidated sector
 - Smallest unit that can be written : a page.
 - Smallest unit that can be **erased** : a block.
 - ightarrow garbage collection
- Wear leveling + Garbage collection = SSD performance

Find a diversifier in SSD technology

- Minimal modifications of the SSD firmware :
 - wear leveling and garbage collection,
 - SATA exchanges.
- Our solution : d = LUN

- Proof of concept with Eagle Tree (Open Source Simulator)
 - 2-bits diversifier \rightarrow Decrease of IOPS = 4%
 - 3-bits diversifier \rightarrow Decrease of IOPS = 14%

• Classification of modes of operation in FDE context

• Security proofs in UFB model (CBC-essiv, IGE-essiv)

• Introduction of a diversifier (non deterministic FDE) + benchmark

- Open question:
 - Performance and diversifier size for industrial firmware?

RSAConference2017

Thank you for your attention!

Revisiting Full-PRF-Secure PMAC and Using It for Beyond-Birthday Authenticated Encryption

Eik List¹, Mridul Nandi²

¹Bauhaus-Universität Weimar, Germany
²Applied Statistics Unit, Indian Statistical Institute, Kolkatta, India

Cryptographers' Track at the RSA Conference February 2017

Section 1

Motivation

Motivation

- DIAC2016: Bernstein announced community's work on Future Directions in Authenticated Encryption:
 - One important aspect: Robustness and beyond-birthday-bound (BBB) security
- BBB-secure block-cipher-based designs (Focus)
 - SCT [Peyrin, Seurin'15]
 - CAESAR candidates: Deoxys, Joltik [Jean et al.'15]
- BBB-secure streamcipher-based designs
 - TriviA-ck [Nandi,Chakraborty'14], HS1-SIV [Krovetz'14], ...
- Highly secure permutation-based designs:
 - Ascon [Dobraunig et al.'14], Ketje and Keyak [Bertoni et al.'14], NORX [Aumasson et al.'14], StriBob [Saarinen'14], ...
- **BBB**-secure designs from primitives with > n-bit security:
 - PIV [Shrimpton, Terashima'13]
 - DCT [Forler et al.'16]

Synthetic Counter in Tweak (SCT)

Peyrin, Seurin'16

- Mac-then-Encrypt composition: EPWC + CTRT
- Based on tweakable block cipher
- Encrypted Parallel Wegman-Carter MAC (EPWC):
 - (here: empty associated data)
 - BBB security if nonces unique
 - Falls back to birthday security if any nonce repeats once

Synthetic Counter in Tweak (cont'd) Peyrin, Seurin'16

CTR-in-Tweak (CTRT) mode:

- BBB security independent also for random 2n-bit inputs
- Graceful security degradation with #nonce repetitions

Synthetic Counter in Tweak (cont'd) Peyrin, Seurin'16

CTR-in-Tweak (CTRT) mode:

- BBB security independent also for random 2n-bit inputs
- Graceful security degradation with #nonce repetitions

Our Goal:

- BBB security without nonces
- Applications: Deterministic AE, key wrap

PMAC as Base Rogaway and Krovetz'11

- Many desirable properties:
 - Incremental, parallelizable, single-key, single-primitive
- Variants used in various block-cipher-based CAESAR candidates
 - COLM [Andreeva et al.'16] (COPA, ELmD), Marble [Guo'14], POET [Abed et al.'14], AEZ [Hoang et al.'14] . . .

Evolution of PMAC Designs

PMAC⁺ [Yasuda'11]

 $\rm LIGHTMAC$ [Luyckx et al.'16]

PMAC/P [Yasuda'12]

PMAC_TBC1k [Naito'15]

Summary

Primitive	Construction	Keys	Size	Advantage	Ref.
	$PMAC^+$	3	n	$O(q^3m^3/2^{2n} + qm/2^n)$	[Yasuda'11]
	$1\kappa_{PMAC^+}$	1	n	$O(qm^2/2^n + q^3m^4/2^{2n})$	[Datta et al.'15]
BC	PMAC/P	r+1	n	$O(q^2/2^n + qm\ell/2^{2n})$	[Yasuda'12]
	PMACX	2	n	$O(q^2/2^n + qm\ell/2^{2n})$	[Zhang,Zhang'15]
	LIGHTMAC	1	n	$O(q^2/2^n)$	[Luyckx et al.'16]
	РМАС_ТВС3к	3	n	$O(q^2/2^{2n})$	[Naito'15]
твс	PMAC_TBC1k	1	n	$O(q/2^n + q^2/2^{2n})$	[Naito'15]
	PMAC x	1	n	$O(q^2/2^{2n} + q^3/2^{3n})$	This work
	PMAC2x	1	2n	$O(q^2/2^{2n} + q^3/2^{3n})$	This work

Existing PMAC Designs – [Naito'15]

- PMAC_TBC3к: 3-keys
- PMAC_TBC1K: 1-key, tweak domain separation at finalization
- Based on tweakable block cipher, full PRF-security

Our purpose:

- Need adaption with 2n-bit output: For N and IV in CTRT
- Found assumption in proof that does not always hold

Contribution

■ PMAC2x:

- \blacksquare BBB-secure parallelizable MAC with 2n-bit outputs
- PMACX: Variant with *n*-bit output like PMAC_TBC1K
 Fix proof
- \blacksquare SIVx: PMAC2x as MAC + Counter-in-Tweak mode
 - BBB-secure 1-primitive, 1-key deterministic AE scheme

Section 2

PMAC2x

PMAC2x

Scheme

Main differences to $PMAC_TBC1\kappa$:

- 2*n*-bit output
- Different proof approach
- Arbitrary-length messages
- \blacksquare General regular function $\mathrm{CONV}: \{0,1\}^n \rightarrow \{0,1\}^{n-d}$

PMAC2x

 \widetilde{E} Tweakable block cipher

- n/t Block/Tweak size
 - d Domain size
- $q/\ell~\# {\sf Queries}/\# {\sf Blocks}$ of ${f A}$

Theorem 1

Let d + t = n, and let $m < 2^t$ denote the maximum number of n-bit blocks of any query. Then

$$\begin{aligned} \mathbf{Adv}_{\mathrm{PMAC2x}[\widetilde{E}]}^{\mathrm{PRF}}(q,\ell,\theta) &\leq \frac{2^{2d}q^2}{2 \cdot (2^n - q)^2} + \frac{2^d q^3}{3 \cdot 2^{2n} (2^n - q)} + \frac{2^d q^2}{2^n (2^n - q)} \\ &+ \mathbf{Adv}_{\widetilde{E}}^{\mathrm{TPRP}}(\ell + 2q, O(\theta + \ell + 2q)). \end{aligned}$$

$\begin{array}{l} PMAC2x \\ \textbf{Proof Idea} \end{array}$

Bad Events: • Case1: $(\widehat{X}_m, \widehat{Y}_m) \in \mathcal{Q}$: Resample $U \leftarrow \{0,1\}^n \setminus \operatorname{range}(\widetilde{\pi}^{2,Y_m})$ and $V \leftarrow \{0,1\}^n \setminus \operatorname{range}(\widetilde{\pi}^{3,X_m})$ $\blacksquare \quad \mathbf{Case2}: \ U \in \mathsf{range}(\widetilde{\pi}^{2, \widehat{Y}_m}) \ \land \\$ $V \in \operatorname{range}(\widetilde{\pi}^{3,X_m})$: Resample $U \leftarrow \{0, 1\}^n \setminus \operatorname{range}(\widetilde{\pi}^{2, Y_m})$ and $V \leftarrow \{0,1\}^n \setminus \operatorname{range}(\widetilde{\pi}^{3,\widehat{X}_m})$ **Case3**: $U \in \operatorname{range}(\widetilde{\pi}^{2,\widetilde{Y}_m}) \land$ $V \notin \operatorname{range}(\widetilde{\pi}^{3,X_m})$: Resample $U \leftarrow \{0,1\}^n \setminus \operatorname{range}(\widetilde{\pi}^{2,\widehat{Y}_m})$ **Case4**: $U \not\in \operatorname{range}(\widetilde{\pi}^{2,\widetilde{Y}_m}) \land$ $V \in \operatorname{range}(\widetilde{\pi}^{3,\widetilde{X}_m})$: Resample $V \leftarrow \{0,1\}^n \setminus \mathrm{range}(\widetilde{\pi}^{3,\widehat{X}_m})$

PMAC2x

Proof Sketch

$$\begin{array}{l} \label{eq:case1: } (\widehat{X}_m, \widehat{Y}_m) \in \mathcal{Q} \\ (i-1) \cdot \frac{2^d}{(2^n-q)} \cdot \frac{2^d}{(2^n-q)} = \frac{2^{2d}(i-1)}{(2^n-q)^2}. \\ \\ \mbox{I} \mbox{Case2: } U \in \mbox{range}(\widetilde{\pi}^{2,\widehat{Y}_m}) \wedge V \in \mbox{range}(\widetilde{\pi}^{3,\widehat{X}_m}) \\ & \frac{i-1}{2^n} \cdot \frac{i-2}{2^n} \cdot \frac{2^d}{2^n-q} \leq \frac{2^d(i-1)^2}{2^{2n}(2^n-q)}. \\ \\ \mbox{I} \mbox{Case3: } U \in \mbox{range}(\widetilde{\pi}^{2,\widehat{Y}_m}) \wedge V \not\in \mbox{range}(\widetilde{\pi}^{3,\widehat{X}_m}) \\ & \frac{2^d}{2^n-q} \cdot \frac{i-1}{2^n} = \frac{2^d(i-1)}{2^n(2^n-q)}. \\ \\ \mbox{I} \mbox{Case4: } U \not\in \mbox{range}(\widetilde{\pi}^{2,\widehat{Y}_m}) \wedge V \in \mbox{range}(\widetilde{\pi}^{3,\widehat{X}_m}) \\ & \frac{2^d(i-1)}{2^n(2^n-q)}. \end{array}$$

 \blacksquare Our theorem follows from sum and union bound over q queries

PMAC2x

Assumption in Old Proof

 \blacksquare Proof of PMAC_TBC1 κ uses probabiliy of multi-collisions:

$$\begin{split} \mathsf{mcoll}_1 &:= (\exists \, \widehat{X}_m^1, \dots, \widehat{X}_m^\rho \in \mathcal{X} \text{ s.t. } \widehat{X}_m^1 = \dots = \widehat{X}_m^\rho) \lor \\ & (\exists \, \widehat{Y}_m^1, \dots, \widehat{Y}_m^\rho \in \mathcal{Y} \text{ s.t. } \widehat{Y}_m^1 = \dots = \widehat{Y}_m^\rho), \\ \mathsf{mcoll}_2 &:= \exists \, (X_m^1, \widehat{Y}_m^1), \dots, (X_m^{\xi}, \widehat{Y}_m^{\xi}) \in \mathcal{Q} \text{ s.t. } (X_m^1, \widehat{Y}_m^1) = \dots = (X_m^{\xi}, \widehat{Y}_m^{\xi}) \end{split}$$

■ Bounds Pr[mcoll₁] (and Pr[mcoll₂] similarly) as

$$\Pr[\mathsf{mcoll}_1] \le 2 \cdot 2^t \cdot \binom{q}{\rho} \cdot \left(\frac{2^{n-t}}{2^n - q}\right)^{\rho} \le 2^{t+1} \cdot \left(\frac{2^{n-t} \cdot eq}{\rho(2^n - q)}\right)^{\rho}$$

■ ρ values are all equal: $(2^{n-t}/(2^n-q))^{\rho}$ ■ 2^t tweak values ■ $\binom{q}{\rho}$ ways to choose ρ out of q values

\blacksquare Holds **only if** the ρ colliding tweaks stem from ρ linearly independent random variables

PMAC2X Assumption in Old Proof – Counter Example

• 2^m queries which combine pair-wise distinct blocks $\{M_i, M'_i\}$ with $M_i \neq M'_i$, for $1 \leq i \leq m$ position-wise:

6

$$Q^{0} = (M_{1}, M_{2}, M_{3}, \dots, M_{m}),$$

$$Q^{1} = (M'_{1}, M_{2}, M_{3}, \dots, M_{m}),$$

$$Q^{2} = (M_{1}, M'_{2}, M_{3}, \dots, M_{m}),$$

$$Q^{2^{m-1}} = (M'_{1}, M'_{2}, M'_{3}, \dots, M'_{m})$$

■ The 2^m resulting values X^i_m , for $0 \le i \le 2^m - 1$, depend on the linear combination of only 2m random variables

PMACx

Corollary 2

Let d + t = n, and let $m < 2^t$ denote the maximum number of *n*-bit blocks of any query. Then, it holds that $\mathbf{Adv}_{\mathrm{PMACx}[\widetilde{E}]}^{\mathrm{PRF}}(q, \ell, \theta) \leq \mathbf{Adv}_{\mathrm{PMAC2x}[\widetilde{E}]}^{\mathrm{PRF}}(q, \ell, \theta)$.

Section 3

SIVx

Bauhaus-Universität Weimar, Indian Statistical Institute

SIVX Deterministic AE Scheme

- \blacksquare PMAC2x as MAC
- \blacksquare $\rm IVCTRT$ as mode
- Tweak for domain separation
- \blacksquare 2n-bit output replaces N, T

Theorem 3 (DAE Security of SIVX)

Let $F : \mathcal{K}_1 \times \mathcal{A} \times \mathcal{M} \to \{0,1\}^{2n}$, and let $\Pi = (\widetilde{\mathcal{E}}, \widetilde{\mathcal{D}})$ be an IV-based encryption scheme with key space \mathcal{K}_2 and IV space \mathcal{IV} . Let $K_1 \leftarrow \mathcal{K}_1$ and $K_2 \leftarrow \mathcal{K}_2$ be independent. Let $\operatorname{CONV}' : \{0,1\}^n \to \mathcal{IV}$ be a regular function. Let \mathbf{A} be a DAE adversary running in time at most θ , asking at most q queries of at most $8 \leq \ell < 2^t$ blocks in total. Then, it holds that

$$\mathbf{Adv}_{\mathrm{SIVx}[F,\Pi]}^{\mathrm{DAE}}(\mathbf{A}) \leq \mathbf{Adv}_{\Pi}^{\mathrm{VE}}(\theta + O(\ell), q, \ell) + \mathbf{Adv}_{F}^{\mathrm{PRF}}(\theta + O(\ell), q, \ell) + \frac{q}{2^{n}}.$$

Proof deferred to full version (ePrint)

Section 4

Conclusion

Conclusion

- \blacksquare Revisited the $PMAC_TBC1\kappa$ construction
 - Identified critical assumption in proof
- \blacksquare Proposed BBB-secure $\mathrm{PMAC2x}$ with 2n-bit outputs
- \blacksquare Derived variant PMACx with *n*-bit outputs
 - Fixed assumption by different proof approach
 - Confirm full-PRF security by Naito
- Derived BBB-secure 1-key, 1-primitive Deterministic AE scheme SIVx
 - Open problem: Reduce transmission overhead < 2n bits

Questions?